机器学习-支持向量机

一、支持向量机

1.概念

        持向量机(SVM)就是基于统计学习理论发展起来的一种数据机器学习方法,是一种基于结构风险最小化原则,实现有序风险最小化的方法。SVM已经在许多实际问题中得到了广泛成功的应用,如图像处理中的图像过滤、视频字幕提取、图像分类和检索,语音识别以及手写体识别;在网络流量的特征选择和提取、流量的识别及分类等领域也得以广泛应用;在汽车领域的应用中也取得了非常好的效果,比如对驾驶员的超车意图和汽车行驶的并线意图识别,车辆辅助驾驶系统以及智能交通等。
2.最大分类与间隔

        二维空间一条直线的方程为,y=ax+b,推广到n维空间,就变成了超平面方程,w是权重,b是截距,训练数据就是训练得到权重和截距。

                                                f(x)=w^{T}x+b

 

令 x+和 x− 位于决策边界上,标签分 别为正、负的两个样本,考虑 x+ 到分 类线的距离为:

                        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        d+=\frac{|w^{T}x++b|}{||w||}​​​​​​​

因此,分类的间隔为:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        width=\frac{2}{||w||}

3.核函数

        我们需要的只是两个向量在新的映射空间中的内积结果,而映射函数到底是怎么样的其实并不需要知道。于是这样就引入了核函数的概念。核函数事先在低维上计算,而将实质上的分类效果表现在了高维上,也就是包含映射,内积,相似度的逻辑,消除掉把低维向量往高维映射的过程,避免了直接在高维空间内的复杂计算。

        核函数除了能够完成特征映射,而且还能把特征映射之后的内积结果直接返回。即把高维空间得内积运算转化为低维空间的核函数计算。注意,核函数只是将完全不可分问题,转换为可分或达到近似可分的状态。

        在实际中,我们会经常遇到线性不可分的样例,此时,我们的常用做法是把样例特征映射到高维空间中去,但如果凡是遇到线性不可分的样例,一律映射到高维空间,那么这个维度大小是会高到可怕的,此时就需要使用核函数。核函数虽然也是将特征进行从低维到高维的转换,但核函数会先在低维上进行计算,而将实质上的分类效果表现在高维上,避免了直接在高维空间中的复杂计算。

常见的几种核函数:

        对于非线性的情况,SVM 的处理方法是选择一个核函数 ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。由于核函数的优良品质,这样的非线性扩展在计算量上并没有比原来复杂多少,这一点是非常难得的。当然,这要归功于核方法——除了 SVM 之外,任何将计算表示为数据点的内积的方法,都可以使用核方法进行非线性扩展。

4. 正则化与软间隔

        

        针对样本不是完全能够划分开的情况,可以允许支持向量机在一些样本上出错,为此要引入软间隔概念。​​​​​​​引入正则化强度参数C(正则化:在一定程度上抑制过拟合,使模型获得抗噪声能力,提升模型对未知样本的预测性能的手段),损失函数重新定义为:

二、支持向量机实战

代码展示:

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
 
 
 
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
 
    df.columns = ['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'label']
    print(df)
 
    data = np.array(df.iloc[:100, [0, 1, -1]])
 
    for i in range(len(data)):
        if data[i,-1] == 0:
            data[i,-1] = -1
 
    return data[:,:2], data[:,-1]
 
 
class SVM:
    def __init__(self, max_iter=100, kernel='poly'):
        self.max_iter = max_iter
        self._kernel = kernel
 
    def init_args(self, features, labels):
        self.m, self.n = features.shape
        self.X = features
        self.Y = labels
        self.b = 0.0
 
        # 将Ei保存在一个列表里
        self.alpha = np.ones(self.m)
        self.E = [self._E(i) for i in range(self.m)]
        # 松弛变量
        self.C = 1.0
 
    def _KKT(self, i):
        y_g = self._g(i)*self.Y[i]
        if self.alpha[i] == 0:
            return y_g >= 1
        elif 0 < self.alpha[i] < self.C:
            return y_g == 1
        else:
            return y_g <= 1
 
    # g(x)预测值,输入xi(X[i])
    def _g(self, i):
        r = self.b
        for j in range(self.m):
            r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])
        return r
 
    # 核函数
    def kernel(self, x1, x2):
        if self._kernel == 'linear':
            return sum([x1[k]*x2[k] for k in range(self.n)])
        elif self._kernel == 'poly':
            return (sum([x1[k]*x2[k] for k in range(self.n)]) + 1)**2
 
        return 0
 
    # E(x)为g(x)对输入x的预测值和y的差
    def _E(self, i):
        return self._g(i) - self.Y[i]
 
    def _init_alpha(self):
        # 外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT
        index_list = [i for i in range(self.m) if 0 < self.alpha[i] < self.C]
        # 否则遍历整个训练集
        non_satisfy_list = [i for i in range(self.m) if i not in index_list]
        index_list.extend(non_satisfy_list)
 
        for i in index_list:
            if self._KKT(i):
                continue
 
            E1 = self.E[i]
            # 如果E2是+,选择最小的;如果E2是负的,选择最大的
            if E1 >= 0:
                j = min(range(self.m), key=lambda x: self.E[x])
            else:
                j = max(range(self.m), key=lambda x: self.E[x])
            return i, j
 
    def _compare(self, _alpha, L, H):
        if _alpha > H:
            return H
        elif _alpha < L:
            return L
        else:
            return _alpha
 
    def fit(self, features, labels):
        self.init_args(features, labels)
 
        for t in range(self.max_iter):
            # train
            i1, i2 = self._init_alpha()
 
            # 边界
            if self.Y[i1] == self.Y[i2]:
                L = max(0, self.alpha[i1]+self.alpha[i2]-self.C)
                H = min(self.C, self.alpha[i1]+self.alpha[i2])
            else:
                L = max(0, self.alpha[i2]-self.alpha[i1])
                H = min(self.C, self.C+self.alpha[i2]-self.alpha[i1])
 
            E1 = self.E[i1]
            E2 = self.E[i2]
            # eta=K11+K22-2K12
            eta = self.kernel(self.X[i1], self.X[i1]) + self.kernel(self.X[i2], self.X[i2]) - 2*self.kernel(self.X[i1], self.X[i2])
            if eta <= 0:
                # print('eta <= 0')
                continue
 
            alpha2_new_unc = self.alpha[i2] + self.Y[i2] * (E2 - E1) / eta
            alpha2_new = self._compare(alpha2_new_unc, L, H)
 
            alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)
 
            b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i1]) * (alpha2_new-self.alpha[i2])+ self.b
            b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (alpha1_new-self.alpha[i1]) - self.Y[i2] * self.kernel(self.X[i2], self.X[i2]) * (alpha2_new-self.alpha[i2])+ self.b
 
            if 0 < alpha1_new < self.C:
                b_new = b1_new
            elif 0 < alpha2_new < self.C:
                b_new = b2_new
            else:
                # 选择中点
                b_new = (b1_new + b2_new) / 2
 
            # 更新参数
            self.alpha[i1] = alpha1_new
            self.alpha[i2] = alpha2_new
            self.b = b_new
 
            self.E[i1] = self._E(i1)
            self.E[i2] = self._E(i2)
        return 'train done!'
 
    def predict(self, data):
        r = self.b
        for i in range(self.m):
            r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])
 
        return 1 if r > 0 else -1
 
    def score(self, X_test, y_test):
        right_count = 0
        for i in range(len(X_test)):
            result = self.predict(X_test[i])
            if result == y_test[i]:
                right_count += 1
        return right_count / len(X_test)
 
    def _weight(self):
        # linear model
        yx = self.Y.reshape(-1, 1)*self.X
        self.w = np.dot(yx.T, self.alpha)
        return self.w
 
 
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25)
 
 
svm = SVM(max_iter=800)
print(svm.fit(X_train, y_train))
print(svm.score(X_train, y_train))
print(svm.score(X_test, y_test))

结果展示:

分析:上述代码操作为鸢尾花的一个分类,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,我们通过SVM算法来实现通过这4个特征预测鸢尾花卉属于哪一品种。

三、总结

        在支持向量机这个实验中,我们学习了支持向量机是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM 的目的就是想要画出一条线,以 “最好地” 区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM 适合中小型数据样本、非线性、高维的分类问题。我们也学习了它的算法原理及概念,同时也知道了它在多种不同问题中的方法。
 

  • 22
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值