标准卷积运算量的计算公式:
F L O P s = ( 2 × C 0 × K 2 − 1 ) × H × W × C 1 {FLOPs }=\left(2 \times C_{0} \times K^{2}-1\right) \times H \times W \times C_{1} FLOPs=(2×C0×K2−1)×H×W×C1
计算公式参考:深度学习之(经典)卷积层计算量以及参数量总结 (考虑有无bias,乘加情况) - 琴影 - 博客园 (cnblogs.com)
参数量计算公式: K 2 × C 0 × C 1 K^{2} \times C_{0} \times C{1} K2×C0×C1
C 0 C_{0} C0 :输入的通道。
K:卷积核大小。
H,W:输出 feature map的大小
C 1 C_{1} C1:输出通道的大小。
bias=False,即不考虑偏置的情况有-1,有True时没有-1。
举例:
输入的尺寸是227×227×3,卷积核大小是11×11,输出是6,输出维度是55×55,
我们带入公式可以计算出
参数量:
1 1 2 × 3 × 6 11^2 \times 3 \times 6 112×3×6=2178
运算量:
2 × 3 × 1 1 2 × 55 × 55 × 6 2 \times 3 \times11^{2}\times 55\times 55 \times 6 2×3×112×55×55×6=13176900
===============================================================
分组卷积则是对输入feature map进行分组,然后每组分别卷积。
假设输入feature map的尺寸仍为 C 0 × H × W C_{0}\times H \times W C0×H×W,输出feature map的数量为 C 1 C_{1} C1个,如果设定要分成G个groups&#