算法中的数学:约数

1.求一个整数的所有约数

对于一个整数x,他的其中一个约数若为i,那么x/i也是x的一个约数。而其中一个约数的大小一定小于等于根号x(完全平方数则两个约数都为根号x),所以我们只需要遍历到根号x,然后计算出另一个约数即可

代码实现:
 

int a[N];
int cnt;
void getnum(int x)
{
   for(int i = 1; i <= x/i; i++)
   {
        if(x%i == 0)
         {
             a[++cnt] = i;
             if(x/i != i)
               { 
                  a[++cnt] = x/i;
               }
          }
    }
} 
             

时间复杂度为O(根号n)

2.求(1~n)的每个数的约数集合

如果我们对每个数都使用试除法会导致算法时间复杂度过高,为O(n*根号n)

所以我们使用正难则反的思想,遍历1~n的所有数,然后将它作为约数给到所有他的倍数。

图示:

这里我们演示了如何使用该方法将每个数的约数求出来。

这样子时间复杂度就来到了nlogn

代码实现:
 

int n;
vector<int> a[N];
void func()
{
for(int i = 1; i <= n; i++)
  {
   for(int j = 1; i*j <= n; j++)
     {
       a[i*j].push_back(i);
     }
  }
}      

3.约数个数定理

根据唯一分解定理我们可知:一个数可以被拆分成多个质数的任意次方相乘

而这些不同的质数经过组合就可以得到num的约数

图示:

而总结出来的公式就是:

(次方加1)*(次方加1) *.......

补充:
试除法求单个数的约数个数

方法一:遍历1~根号n的数将cnt返回

方法二:分解质因数后套用公式计算

4.约数和定理

计算方法:将每个质因数的所有分别种类相加,记为sum,然后不同的质因数的sum乘起来

右边我们就是在计算约数之和的具体过程

 5.例题讲解

审题:
本题需要我们求出一到n的数的所有约数的个数之和

思路:
方法一:暴力解法

我们可以用试除法计算1到n每个数的所有约数,然后将cnt累加起来,外层循环为遍历1~n,内层为试除法,时间复杂度为O(n根号n)

运行次数为1e12,一定超时

方法二:正难则反

我们可以遍历1~n,不过这里的i含义是约数,用n/i可以求出当前约数一共出现的次数,然后就累加起来。但是这样就要运行n次,也就是1e8次,还是有可能超时

优化:由于当i小于等于n/2的时候,约数出现次数大于等于1,而i大于n/2的时候,约数次数一定为1,所以我们只用遍历到n/2即可,后面的次数都为1,所以后面的约数的出现次数等于后面的约数个数(n-n/2)

解题:
 

#include<iostream>
using namespace std;
typedef long long ll;
ll n;
ll cnt;
int main()
{
   cin >> n;
    for(int i = 1; i <= n/2; i++)
    {
         cnt += n/i;
    }
    cnt += n-n/2;
    cout << cnt << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值