本文用作学习信号与系统知识
首先,要知道傅里叶变换是一种将信号从时间域转换到频率域的一个工具,其将一个函数表示为频率成分的线性组合。
为什么傅里叶变换的存在条件之一是该函数必须保证绝对可积呢?
因为这个条件可以确保傅里叶变换的收敛性----也就是说其变换后的频率成分可以被很好的表示和计算
首先我们要明白 什么是函数的绝对可积性:(函数的绝对值的积分是有限的)
一个函数f(x) 被称为绝对可积,是指其在定义域上的绝对值的积分是有限的。简单来说:就是一个函数的“面积”不能够太大。具体一点就是:如果你把这个函数在整个定义域(一般是负无穷到正无穷)上面做“面积计算”,那么这个面积就是要有限的,也就是说是一个可以被算出具体数值的数,而不是无穷大。公式如下:
这个可以保证傅里叶变换可以通过积分得到一个确定的结果。
这个公式的意思:我们把f(x)的绝对值取出来,然后从x=−∞ 到 x=+∞ 对它进行积分结果必须是一个有限的数。如果是无穷大的话,就说明函数不是绝对可积的。
举俩个例子吧:
例子1:快速衰减的函数
算一下:结果是2 所以他绝对可积
例子2:不衰减的函数
这个虽然在俩个无穷处趋向为0,但是他衰减的很慢,所以他的面积下不来。
算出来的结果也就是无穷大(发散),所以其不是绝对可积的
所以我们现在就已经明确了什么是函数的绝对可积性
----------------------------------------------分割线--------------------------------------------------------
下面说明为什么傅里叶变换需要这个条件呢:
傅里叶变换的定义涉及到对f(x)和复指数函数e^−iωx 的乘积进行积分
注意:大学里一般我们复数使用 j ,因为电流中的 i 表示电流 ,为了避免误解 。但是此处我使用的是 i ,大家不要介意
如果函数f(x)不是绝对可积的,意味着其值在某些区域上可能过大,导致上述积分发散,从而傅里叶变换无法收敛。所以例如某些震荡性非常强的函数(比如正弦函数在整个无限区间上的积分),这种通常就不能直接做傅里叶变换。
好啦,简单总结一下:
- 绝对可积性:函数的绝对值的积分是有限的
- 傅里叶变换条件:绝对可积性确保傅里叶变换的积分收敛,变换结果存在且有意义