RT-DETR:
属于基于 Transformer 的端到端检测架构,直接通过 Transformer 解码器预测边界框和类别,无需 NMS 后处理(非极大值抑制)。代表模型如 RT-DETR-R50/101。
YOLO:
属于Anchor-based/Anchor-free 的单阶段检测架构,依赖卷积神经网络(CNN)提取特征,需要 NMS 后处理来消除重叠预测框。
RT-DETR:
主打高精度与实时性的平衡。
YOLO:
强调极致速度。
RT-DETR:
适用于高精度要求的场景。
YOLO:
适用于资源受限的边缘设备或对延迟敏感的场景。
RT-DETR:
Transformer 架构参数较多,模型体积较大(如 RT-DETR-H 有 119M 参数),但计算效率高。
YOLO:
CNN 架构更轻量,易于部署。
5万+

被折叠的 条评论
为什么被折叠?



