RT-DETR与Yolo区别

部署运行你感兴趣的模型镜像

RT-DETR:
属于基于 Transformer 的端到端检测架构,直接通过 Transformer 解码器预测边界框和类别,无需 NMS 后处理(非极大值抑制)。代表模型如 RT-DETR-R50/101。

YOLO:
属于Anchor-based/Anchor-free 的单阶段检测架构,依赖卷积神经网络(CNN)提取特征,需要 NMS 后处理来消除重叠预测框。

RT-DETR:
主打高精度与实时性的平衡。

YOLO:
强调极致速度。

RT-DETR:
适用于高精度要求的场景。

YOLO:
适用于资源受限的边缘设备或对延迟敏感的场景。

RT-DETR:
Transformer 架构参数较多,模型体积较大(如 RT-DETR-H 有 119M 参数),但计算效率高。

YOLO:
CNN 架构更轻量,易于部署。

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

03-22
### 实时目标检测中的DETRRT-DETR 实时目标检测领域中,DETR(Detection Transformer)因其创新性的架构设计引起了广泛关注。然而,原始的DETR模型由于其较高的计算复杂度,在实际应用中难以满足实时性能需求。因此,研究者们提出了多种改进方案来优化DETR的速度效率。 #### RT-DETR 的核心理念 RT-DETR 是一种基于 DETR 框架构建的实时目标检测方法[^1]。它通过引入高效的 CNN 主干网络(Backbone),显著降低了模型的推理时间,从而实现了更快的目标检测速度。具体来说: - **CNN Backbone**:相比于传统的 ViT 或其他复杂的主干网络,RT-DETR 使用卷积神经网络作为编码器的核心组件。这种选择不仅保留了 DETR 的强大建模能力,还大幅减少了计算开销。 - **轻量化探索**:尽管已有大量关于较大规模模型的研究成果,但对于小型化模型的设计仍存在不足之处。为此,LW-DETR 进一步探讨了如何利用普通的 ViT 结构结合 DETR 框架实现高效实时检测的可能性。 #### YOLOv10 的贡献 此同时,YOLO 系列算法也在不断演进以支持更快速、精准的对象识别任务。最新版本——YOLOv10 提出了端到端解决方案,旨在提供卓越精度的同时保持极高的运行效率[^2]。以下是该工作的几个亮点特征: - 它由清华大学团队开发完成,并开源了完整的源码以及预训练权重文件供社区使用; - 支持多平台部署选项 (如 ONNX TensorRT),方便开发者根据不同硬件环境定制最佳配置; - 文档详尽且易于理解,适合初学者入门学习。 对于希望实施自己的项目或者深入研究这些先进理论的人来说,上述两种途径都值得考虑尝试一下! ```python import torch from yolov10 import YOLOv10 model = YOLOv10(pretrained=True) # Example input tensor shape: batch_size x channels x height x width dummy_input = torch.randn(1, 3, 640, 640) outputs = model(dummy_input) print(outputs.shape) # Output dimensions depend on the specific architecture used. ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值