- 博客(13)
- 收藏
- 关注
原创 OpenCompass 大模型评测实战(作业)
构造新的数据集需要修改至少三个文件,一是opencompass/configs/datasets下面,新建相应的脚本;二是opencompass/opencompass/datasets去构建一个新类,并实现一个load函数,负责把新的数据集以csv/json等格式load进来,并返回DatasetDict形式,传出之后,会在刚才configs里面新建的脚本中拼起来,最终进行append;
2024-04-25 21:24:46 335 2
原创 OpenCompass 大模型评测实战(笔记)
对话模型:一般是在的基座模型的基础上,经过指令微调或人类偏好对齐获得的模型(如OpenAI的ChatGPT、上海人工智能实验室的书生·浦语),能理解人类指令,具有较强的对话能力。上海人工智能实验室科学家团队正式发布了大模型开源开放评测体系 “司南” (OpenCompass2.0),用于为大语言模型、多模态模型等提供一站式评测服务。基座模型:一般是经过海量的文本数据以自监督学习的方式进行训练获得的模型(如OpenAI的GPT-3,Meta的LLaMA),往往具有强大的文字续写能力。
2024-04-25 21:07:58 344 1
原创 Lagent & AgentLego 智能体应用搭建(作业)
首先通过import os@tool_api"""一个天气查询API。可以根据城市名查询天气信息。Args:"""else:Args:Returns:"""data = [f'数据观测时间: {now["obsTime"]}',f'温度: {now["temp"]}°C',f'体感温度: {now["feelsLike"]}°C',f'天气: {now["text"]}',f'风向: {now["windDir"]},角度为 {now["wind360"]}°',
2024-04-25 20:47:13 258 1
原创 Lagent & AgentLego 智能体应用搭建(笔记)
大脑:作为控制器,承担记忆、思考和决策任务。接受来自感知模块的信息,并采取相应动作。感知:对外部环境的多模态信息进行感知和处理。包括但不限于图像、音频、视频、传感器等。动作:利用并执行工具以影响环境。工具可能包括文本的检索、调用相关API、操控机械臂等。一个轻量级开源智能Agent体框架,旨在让用户Plan-Act lteration可以高效地构建基于Search Plan-then-Act大语言模型的智能体。
2024-04-25 20:35:24 496 1
原创 XTuner 微调 LLM:1.8B、多模态
准备InternLM2-Chat-7B的预训练模型,然后初始化git配置,并设置 Git 用户名,OpenXLab 使用你在平台的用户名作为 Git的用户名。在 OpenXLab 先创建一个空仓库,填写模型仓库的基本信息,创建完成空的模型仓库后,找到该仓库的 git 地址并拉取该空仓库至本地,空仓库的地址在模型文件的下载,找到空仓库下的 git 地址,执行 git clone 操作。在OpenXLab浦源平台选择Gradio组件,开始创建,填入 GitHub 仓库的地址,创建。微调后,可以更好的回答问题。
2024-04-19 16:23:41 616 1
原创 XTuner小助手
然后准备数据集,创建文件存放数据,打开Python文件将下面内容复制进去,先下载依赖和InternLM的项目代码,然后存入文件夹。然后准备模型,进行文件配置,修改后,就可以开始训练了。先创建开发机,进入后进行环境的安装。可以发现到最后模型有些被过拟合了。3.训练自己的小助手。连接端口后,打开网址。
2024-04-19 16:04:52 244
原创 LMDeploy量化部署LLM&VLM实战(作业)
课程文档:https://github.com/InternLM/Tutorial/blob/camp2/lmdeploy/README.md。先使用Transformer库运行模型直接运行InternLM2-Chat-1.8B模型,下载模型,如果是在InternStudio开发机上,可以由开发机的共享目录。新建Python源代码文件,打开,然后填入以下内容,运行后,可以通过命令行窗口直接与模型对话,运行后,可以通过命令行窗口直接与模型对话。然后运行,进入网址,就可以用了。新建文件夹,填入以下内容,
2024-04-16 00:40:14 385
原创 LMDeploy量化部署LLM&VLM实战(笔记)
服务器端:CPU部署,单GPU/TPU/NPU部署,多卡/集群部署.移动端/边缘端:移动机器人,手机…….LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。核心功能包括高效推理、可靠量化、便捷服务和有状态推理。
2024-04-15 23:50:26 422 1
原创 【茴香豆:搭建你的 RAG 智能助理】2
进入开发机后,从官方环境复制运行 InternLM 的基础环境,命名为。命令行输入下面的命令,修改用于向量数据库和词嵌入的模型。这样就完成了针对“茴香豆怎么部署到微信群”的提问。然后修改配置文件,用已下载模型的路径替换。然后创建知识库,下载需要的语料,复制完成后,在本地查看环境,从茴香豆官方仓库下载茴香豆。首先创建开发机,配置环境,复制茴香豆所需模型文件,安装茴香豆运行所需依赖。用于检索的重排序模型。
2024-04-12 21:35:00 611
原创 【茴香豆:搭建你的 RAG 智能助理】
IM工具中创建用户群组,讨论、解答相关的问题。随着用户数量的增加,答复内容高度重复,充斥大量无意义和闲聊,人工回复,成本高,影响工作效率。茴香豆通过提供自动化的问答支持,帮助维护者减轻负担,同时确保用户问题得到有效解答。
2024-04-12 21:18:29 1044
原创 【书生·浦语大模型实战营第二期】学习笔记2
首先,打开Intern Studio,创建开发机,填写开发机名称,点击 选择镜像 使用。按路径创建文件夹,进入demo文件,复制下面的代码保存。最后,输入命令,等模型加载完成后就可以使用了。配置完成后,进入新创建的conda环境中。镜像,然后在资源配置中,使用。文件,复制以下代码,然后保存。的选项,创建开发机。中输入环境变量配置。
2024-04-03 13:26:30 266
原创 【书生·浦语大模型实战营第二期】学习笔记1
2023.8.21 升级版对话,模型InternLM-Chat-7B v1.1发布,开源智能体框架Lagent,支持从语言模型到智能体升级转换 2023.8.28:InternLM千亿参数模型参数量升级到123B。InternLM2:在Base基础上,在多个能力方向进行了强化,在评测中成绩优异,同时保持了很好的通用语言能力,是我们推荐的在大部分应用中考虑选用的优秀基座。4.2条件奖励模型,包含不同的系统提示,针对不同类型的偏好,从而有效地模拟单一奖励模型中的各种偏好。
2024-03-30 15:43:49 570
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人