OpenCompass 大模型评测实战(作业)

本文详细介绍了如何使用OpenCompass评估InternLM模型在C-Eval数据集上的性能,包括环境配置、错误解决方法,以及如何自定义数据集并提交至OpenCompass平台的过程。附有相关教程链接和参考资源。
摘要由CSDN通过智能技术生成

1.0使用 OpenCompass 评测 internlm2-chat-1_8b 模型在 C-Eval 数据集上的性能

首先创建开发机,进行环境安装,

studio-conda -o internlm-base -t opencompass
source activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -r requirements.txt

解压评测数据集到 data/ 处,列出所有跟 InternLM 及 C-Eval 相关的配置,

如果遇到 error,解决方案

pip install protobuf
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU

正常评测后将会看到

2.0自定义数据集客主观评测并提交至OpenCompass官网

构造新的数据集需要修改至少三个文件,一是opencompass/configs/datasets下面,新建相应的脚本;二是opencompass/opencompass/datasets去构建一个新类,并实现一个load函数,负责把新的数据集以csv/json等格式load进来,并返回DatasetDict形式,传出之后,会在刚才configs里面新建的脚本中拼起来,最终进行append;三是要把这个新类在opencompass/opencompass/datasets/__init__.py中进行import。

参考资料

链接:https://blog.csdn.net/weixin_42296932/article/details/138119933

视频地址:https://www.bilibili.com/video/BV1Pm41127jU/

课程文档:https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md

提交指南:OpenCompass平台指引 | 贡献数据集

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值