1.模型部署
定义
在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。
在人工智能领域,横型部署是实现深度学习算法潜地应用的关天键步骤,简单来说,横型部署就是将训练好的深度学习横型在特定环境中运行的过程。
场景:
服务器端:CPU部署,单GPU/TPU/NPU部署,多卡/集群部署.
移动端/边缘端:移动机器人,手机…….
2.大模型部署面临的挑战
计算量巨大;访存瓶颈;动态请求
3.模型剪枝
剪枝指移除横型中不必要或多余的组件,比如参数,以使模型更加高效。通过对模型中贡献有限的元余参数进行剪枝,在保证性能最低下降的同时,可以减小存储需求、提高计算效率。分为结构化剪枝和非结构化剪枝。
4.知识蒸馏
知识蒸馏是一种经典的模型压缩方法,核心思想是通过能。引导轻量化的学生模型“模仿”性能更好、结构更复杂的教师模型,在不改变学生模型结构的情况下提高其性能。
5.量化
量化技术将传统的表示方法中的浮点数转换为整数或其他离散形式,以减轻深度学习模型的存储和计算负担。
6.LMDeploy
6.1简介
LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。核心功能包括高效推理、可靠量化、便捷服务和有状态推理。
6.2核心功能
模型高效推理;模型量化压缩;服务化部署。
6.3性能表现
LMDeploy TurboMind 引擎拥有卓越的推理能力,在各种规模的模型上,每秒处理的请求数是 vLLM的1.36~1.85 倍。在静态推理能力方面,TurboMind 4bit 模型推理速度(out token/s)远高于FP16/BF16推理。在小batch时,提高到2.4倍。