工业降碳新思路:当SCADA遇上AI,让能源管理“聪明”起来

工业降碳新思路:

让能源管理“聪明”起来

当SCADA遇上AI

Digital carbon reduction and emission reduction

某钢铁重镇的环保监测系统突然拉响红色警报 —— 当地最大的钢铁厂单日碳排放量突破 1.2 万吨,相当于 3000 公顷森林全年的碳吸收量,传统减排手段始终无法突破 "成本高、效率低" 的死循环。

然而,当 AI 算法介入生产流程的那一刻,改变正在悄然发生:智能系统通过分析 3000 个传感器实时数据,将高炉燃烧效率提升了 9.6%,炉渣余热利用率提高 41%,而这一切,仅仅用了 47 天。

图片

这不是科幻电影场景,而是AI驱动的SCADA系统正在悄然改变工业能耗管理的真实写照,在“双碳”目标倒逼产业变革的今天,一场关于工业大脑的智慧升级正在发生。

在传统的方式中,能源管理有许多不可言喻的“盲区之痛”,比如在人工抄表时代,管理者往往在月度电费单到手时才发现异常,如同通过后视镜开车。据某权威机构调研显示,我国流程工业中高达23%的能耗浪费源于设备空转、工艺参数失调等隐形问题。90%的设备故障存在渐进式劣化特征,但是传统点检模式难以及时捕捉。

然而,AI技术的横空出世,让我们看到更多的可能性。SCADA+AI的进化之路:

图片

环境账本可视化

通过实时采集和监测各类能源数据,如电力、燃气、蒸汽等的用量,让企业清晰了解能源消耗的分布和变化情况,及时发现高耗能环节和设备。

基于对设备运行状态和生产流程的监控,合理调整设备运行时间和负荷,避开用电高峰,减少不必要的能源消耗,提高能源利用效率。

图片

设备寿命延长术

实时监控设备的运行参数,如温度、压力、振动等,当参数出现异常时及时报警,使维护人员能够迅速响应,避免设备故障进一步恶化,减少因设备故障导致的能源浪费和生产中断。

通过对设备运行时间、累计工作量等数据的统计分析,制定科学合理的维护计划,确保设备处于良好的运行状态,提高设备能效,延长设备使用寿命,减少设备更换频率,降低资源消耗。

利用生存分析、异常检测算法、深度学习模型等,对 SCADA 系统采集的大量设备运行数据进行分析和建模,提前预测设备可能出现的故障,进一步减少设备停机时间和维修成本。

通过对设备历史运行数据和维修记录的分析,AI 可以评估设备的剩余使用寿命,为企业制定设备更新计划提供科学依据,避免设备过度使用或过早更换。

关键差异

名称

生存分析

异常检测算法

深度学习模型

用途

研究事件发生前的生存时间,分析影响因素,处理右删失数据

识别数据中的异常点

适用于无标签或标签稀疏的场景

处理复杂非线性关系和高维数据

使用技术

Kaplan-Meier估计

Co比例风险模型

参数模型

随机生存森林

统计方法

聚类算法

孤立森林(IsolationForest)

自动编码器(Autoencoder)

单类SVM(One-Class SVM)

GAN

卷积神经网络(CNN)

循环神经网络(RNN/LSTM)

Transformer

生成对抗网络(GAN)

强化学习(RL)

数据类型

时间-事件数据

协变量

数值型数据

时间序列

大量高维数据

AI/ML

集成

通过ML强化

核心ML应用

核心AI技术

场景

可靠性测试

传感器异常预警

预测性维护

图片识别,NLP,语音识别

图片

总结

生成分析是一种针对事件发生时间数据的统计方法,常结合人工智能 / 机器学习技术加以优化。

异常检测是人工智能 / 机器学习的一个特定应用领域,用于识别数据中的异常值。

深度学习模型则是一类广泛的人工智能算法,可用于学习复杂模式。

图片

管理决策升维度

对生产流程中的各个环节进行实时监控和数据采集,分析生产数据,找出生产过程中的瓶颈和不合理之处,优化生产工艺和流程,提高生产效率,减少生产过程中的能源和资源浪费。将产品产量与能源消耗数据进行关联分析,帮助企业确定合理的生产规模和能源消耗指标,避免过度生产或能源消耗过高。

图片

图片

降碳节能好帮手

结合遗传算法(GA)、碳感知启发式算法和碳排放因子等数据,对企业的碳排放进行精确核算,并根据生产计划和能源使用情况预测未来的碳排放趋势,为企业制定碳减排目标和措施提供数据支持。

利用 AI 技术分析企业的生产流程和供应链数据,识别碳足迹的主要来源,帮助企业采取针对性的措施减少碳排放,实现供应链的低碳化管理。

遗传算法(GA): 遗传算法是一种受生物进化过程启发的优化算法,它模拟了自然选择和遗传机制。企业中的许多设备,如工业锅炉、电机等,其运行参数的设置会影响能源效率和碳排放。遗传算法可模拟生物进化过程,在众多可能的参数组合中搜索最优解,使设备在高效运行的同时降低碳排放。

碳感知启发式算法:该算法专门针对碳排放问题设计,在优化过程中直接将碳排放作为重要的考量因素。它可以结合企业的生产、运营特点,快速找到一种既能满足业务需求,又能有效降低碳排放的近似最优方案。

图片

SCADA 与 AI 技术的深度融合,让我们看到企业的数字化降碳和实现可持续发展的更多可能性。通过 SCADA 系统对能源数据的精准采集与实时监测,再借助 AI 技术强大的分析与优化能力,企业得以深入洞察自身能源使用的每一处细节,从生产流程的精细调控到设备运行的智能管理,实现了能源利用效率的大幅提升,有效削减了碳排放。

值得强调的是,数据科学家在构建模型时,不仅专注于算法研发,更通过分析长期趋势数据来持续优化模型。而数据采集与监控系统(SCADA)则扮演了关键的技术桥梁角色 —— 它通过每日实时调用模型,将数据科学家的研究成果以低成本落地应用,最终实现工业系统的持续迭代优化(这里的 “持续” 是核心价值,而非一次性改进)。

AI+SCADA的创新组合,不仅为企业在当下激烈的市场竞争中赢得了显著的成本优势与环境效益,更为企业在未来的可持续发展征程中筑牢了坚实根基。相信在科技持续进步与创新驱动的引领下,会有更多企业积极拥抱 SCADA 与 AI 技术,在降碳减排的道路上稳步前行,携手绘就绿色、低碳、可持续发展的壮美蓝图,让我们的地球家园焕发出更加蓬勃的生机与活力。

图片

TALK WITH US !

文末互动话题:

您的工厂正在经历怎样的能源管理变革?欢迎留言探讨数字化转型中的挑战与突破。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值