作者:萧炎 | 来源:3DCV
在公众号「3DCV」后台,回复「原论文」可获取论文pdf和代码链接
1、导读
近年来,同步定位与建图(SLAM)技术在自动驾驶、智能机器人、增强现实(AR)、虚拟现实(VR)等领域得到广泛应用。使用最流行的三种类型传感器(例如视觉传感器、LiDAR传感器和 IMU)的多传感器融合在SLAM中变得无处不在,部分原因是互补的传感能力和不可避免的缺陷(例如低精度和长距离测量)。独立传感器在具有挑战性的环境中的术语漂移)。在本文中,我们全面调查了该领域的研究工作,并努力对相关工作提供简洁而完整的回顾。首先,简要介绍了SLAM中状态估计器的构成。其次,给出了不同多传感器融合算法的最新算法。然后我们分析与所审查的方法相关的缺陷并制定一些未来的研究考虑因素。本文可以认为是对新人的简要指南,也是经验丰富的研究人员和工程师探索新的有趣方向的综合参考。
2、状态估计器
卡尔曼滤波器(KF)和滑动窗口优化是多传感器融合中最常用的状态估计器形式。在本节中,我们将对它们进行简要介绍。
2.1、KF
在SLAM中,先验值通常是从传感器(例如IMU和编码器)递归得出的。测量值通常从传感器获得,例如GPS、摄像头和激光雷达。后验值是融合结果,也是定位输出。在实际的机器人状态估计中,估计后验概率密度可以表示为: