最新综述!基于相机、LiDAR和IMU的多传感器融合SLAM

作者:萧炎 | 来源:3DCV

在公众号「3DCV」后台,回复「原论文」可获取论文pdf和代码链接

1、导读

近年来,同步定位与建图(SLAM)技术在自动驾驶、智能机器人、增强现实(AR)、虚拟现实(VR)等领域得到广泛应用。使用最流行的三种类型传感器(例如视觉传感器、LiDAR传感器和 IMU)的多传感器融合在SLAM中变得无处不在,部分原因是互补的传感能力和不可避免的缺陷(例如低精度和长距离测量)。独立传感器在具有挑战性的环境中的术语漂移)。在本文中,我们全面调查了该领域的研究工作,并努力对相关工作提供简洁而完整的回顾。首先,简要介绍了SLAM中状态估计器的构成。其次,给出了不同多传感器融合算法的最新算法。然后我们分析与所审查的方法相关的缺陷并制定一些未来的研究考虑因素。本文可以认为是对新人的简要指南,也是经验丰富的研究人员和工程师探索新的有趣方向的综合参考。

2、状态估计器

卡尔曼滤波器(KF)和滑动窗口优化是多传感器融合中最常用的状态估计器形式。在本节中,我们将对它们进行简要介绍。

2.1、KF

在SLAM中,先验值通常是从传感器(例如IMU和编码器)递归得出的。测量值通常从传感器获得,例如GPS、摄像头和激光雷达。后验值是融合结果,也是定位输出。在实际的机器人状态估计中,估计后验概率密度可以表示为:

### 多传感器融合SLAM综述 多传感器融合同步定位与建图(SLAM)技术旨在通过集成多种类型的传感器数据来提高机器人或自主系统的环境感知能力。这些传感器可以包括但不限于激光雷达(LiDAR),相机,惯性测量单元(IMU),超声波传感器等。 在研究领域内,存在大量关于多传感器融合SLAM的高质量综述文章论文。这类工作通常会总结现有方法的优点局限性,并指出未来的研究方向[^1]。 一篇具有代表性的综述文章讨论了视觉-惯导组合导航系统的设计原理及其挑战所在。该文不仅涵盖了硬件选型建议,还深入探讨了不同算法框架下的误差传播特性以及如何利用IMU辅助实现鲁棒估计等问题。 另一篇重要文献则聚焦于基于事件相机(event camera)其他传统成像设备相结合的方式来进行高效实时处理的任务上。文中提到的方法能够显著减少运动模糊带来的影响,在快速移动场景下表现出色。 对于希望深入了解此主题的人来说,《The Visual SLAM Recipe Book》提供了详尽的技术细节指导;而《Multi-Sensor Fusion for Autonomous Vehicles》一书更是全面覆盖了自动驾驶汽车所需的各种传感技术相应的软件架构设计思路。 ```python # Python代码示例:简单的多传感器数据读取函数模板 def read_multi_sensor_data(sensor_type): if sensor_type == 'lidar': data = load_lidar_scan() elif sensor_type == 'camera': data = capture_image_frame() elif sensor_type == 'imu': data = get_imu_readings() else: raise ValueError("Unsupported sensor type") return preprocess(data) # 假设上述函数用于预处理来自不同类型传感器的数据流, # 这些经过初步处理后的观测值随后会被送入一个多模态特征提取网络中进一步分析。 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值