(一)多传感器融合

前言:本专栏用于记录学习过程中的笔记

 一、定义与概念

多传感器融合(Multi-sensor fusion)是指将来自不同类型或不同位置的传感器信息进行整合,以提高感知和信息处理的精确度、鲁棒性和可靠性的技术。传感器可以是各种物理传感器,如摄像头、雷达、激光雷达、惯性测量单元(IMU)等。多传感器融合的目标是通过综合不同传感器的信息,提供更全面、准确的环境感知和决策支持。 

其原理基于不同传感器对同一目标或现象的测量具有互补性冗余性。通过融合这些数据,可以消除单个传感器的局限性和不确定性,提高系统的性能和鲁棒性。融合的过程通常包括数据采集、预处理、特征提取、数据关联、融合算法应用以及最终的结果输出

 二、多传感器融合技术发展历程

 早期探索阶段(二战期间 - 20世纪50年代)

二战期间,雷达在军事领域的应用暴露出单一传感器的局限性。为提升对目标的探测与识别能力,开始尝试将多个雷达及其他类型传感器组合运用。例如,在战争中,不同类型的雷达被用于探测不同距离和方位的目标,同时配合光学传感器来提高对目标的识别精度。这一时期,高炮火控系统将雷达与光学传感器相结合,有效提高了高炮系统的射击精度和抗干扰能力 。

技术起步阶段(20世纪60年代 - 70年代)

随着科技发展,传感器技术不断进步,各类传感器的种类和性能得以提升。这一时期,多传感器融合技术逐渐形成概念。在军事领域,为满足对目标的精确探测和跟踪需求,开始研究将不同类型的传感器进行组合。例如,在导弹防御系统中,将雷达、红外传感器等多种传感器结合起来,实现对目标的全方位监测 。

 快速发展阶段(20世纪80年代 - 90年代)

计算机技术的飞速发展为多传感器融合技术提供了有力支持。人们对多传感器融合技术的研究不断深入,提出了多种融合模型和算法 。在军事领域,多传感器融合技术在军事装备上广泛应用。例如,在战斗机的飞行控制系统中,融合了雷达、红外传感器、激光传感器等多种传感器,提高了飞机对目标的识别和跟踪能力 。在民用领域,随着技术的发展,多传感器融合技术开始应用于民用领域。如在智能交通系统中,将交通摄像头、车辆传感器、道路传感器等结合起来,实现对交通流量的监测和控制 。

广泛应用阶段(21世纪初 - 至今)

随着信息技术、通信技术、人工智能等技术的不断发展,多传感器融合技术在各个领域得到广泛应用。对多传感器融合技术的研究也更加深入,不断提高其性能和可靠性 。在军事领域,多传感器融合技术在军事装备上的应用更加成熟。在现代战争中,通过多传感器融合技术实现对战场态势的实时监测和分析,提高作战指挥的效率和决策的准确性 。在民用领域,多传感器融合技术的应用也越来越广泛。智能家居系统中,融合了多种传感器,实现对家居环境的智能控制和监测 。

三、多传感器信息融合的结构模型

多传感器融合的结构模型有多种划分方法。按信息融合的层次,可分为数据层融合、特征层融合和决策层融合;按传感器信息参与融合的方式,可分为分布式、集中式和混合式

在多传感器系统中,选择融合结构需依据聚变系统的功能以及融合中各信息间的关系等,其原则包括:满足多传感器系统的功能需求、确保信息融合结构可实现、使信息融合系统的结构尽量简单高效。

1、数据层融合

数据层融合,也称为像素级融合,是最低层次,即在处理之前对传感器收集的原始信息进行融合和分析。由于原始数据尚未处理,因此数据层融合允许最大限度地保留有关原始数据的详细信息。然而,该方法计算量很大,抗干扰能力很差。传感器的性能和状态会对数据层融合产生重大影响。

数据层融合可按不同标准进行分类:

按融合方式

直接融合:将来自不同传感器的原始数据直接进行合并。例如,将多个摄像头采集到的图像数据直接拼接在一起。

加权融合:根据传感器的重要性或可靠性等因素,为不同传感器的数据分配权重后进行融合。比如在一个多传感器系统中,某些传感器的精度较高,就给其数据分配较大权重,再进行融合。

变换融合:对原始数据进行某种变换后再融合。例如,将原始数据进行傅里叶变换,把不同频率的信息进行整合后再融合。

按融合对象

同类数据融合:将相同类型传感器采集到的数据进行融合。比如多个温度传感器采集的温度数据进行融合。

异类数据融合:融合不同类型传感器的数据。例如将图像传感器的图像数据与红外传感器的温度数据进行融合。

按融合目的

增强数据质量:通过融合提高数据的准确性、可靠性等。例如,对多个传感器采集到的同一环境数据进行融合,去除噪声,提高数据质量。

实现功能互补:利用不同传感器的特性,实现功能上的互补。比如将具有不同功能的传感器数据融合,使系统具备更全面的感知能力。

2、特征层融合

特征层融合如图所示,其原理是对各传感器采集的原始数据信息进行特征分类和数据归纳,运用特定的算法提取出具有足够判别能力的有效信息。随后,借助数据融合技术将这些信息整合成单个特征向量,再运用模式识别算法进行处理。特征层融合能够对多条信息进行深入的特征分析和数据压缩,进而实现决策分析所需特征信息的最大化。然而,这种方法虽对通信带宽的占用相对较少,但在数据处理过程中可能因数据丢失而导致融合结果的准确性降低

特征级融合主要分为目标状态融合和目标特性融合这两大类。

目标状态融合:在多传感器的目标跟踪领域应用广泛。融合系统首先对传感器数据进行预处理,完成数据配准工作。接着进行融合处理,主要实现参数关联和状态估计。例如在实际的目标跟踪场景中,通过对传感器数据的预处理,使得不同传感器的数据在空间和时间上能够准确匹配,为后续的参数关联和状态估计提供基础。

目标特性融合:其本质是模式识别问题。在融合之前,必须对特征进行关联处理,然后将特征矢量分类成有意义的组合。比如在智能安防系统中,对不同传感器采集到的特征进行关联处理,再将这些特征矢量分类为不同的类别,如人脸特征、车辆特征等,从而实现对目标的识别。

在融合的三个层次(决策级融合、特征级融合、像素级融合)中,特征级融合发展相对较为完善。一方面,由于在特征层建立了特征关联技术,能够保证融合信息的一致性,同时对计算量和通信带宽的要求相对较低。另一方面,因为部分数据被舍弃,导致准确率有所下降。例如在一些复杂的图像识别场景中,为了提高处理效率,可能会舍弃一些对整体识别影响较小的特征数据,但这也可能会导致识别准确率的降低。

3、决策层融合

决策级收敛为信息融合的最高层级。决策层融合要求针对同一观测目标,对来自不同类型传感器的原始信息进行处理,完成特征提取、分类以及区分等操作,以得出初步结论。接着依据决策目标的具体需求进行相关的决策判断。决策层融合具备实时性佳、容错性强等优势,即便面对一个或多个传感器的故障,仍能做出合理决策。然而,决策层面的融合有时会导致大量信息损失,且在融合前需进行大量的数据预处理 。

4、三种层次融合方式的比较

三种数据融合的方法各有特点,主要特征的对比如图所示。

一个系统采用何种层次的数据融合方法,取决于系统的具体需求。不存在适用于所有情况的通用结构。对于多传感器融合系统的特定工程应用而言,需综合考虑传感器性能、系统计算能力、通信带宽、期望的准确率以及资金能力等因素,来确定最优层次。

在实际情况中,一个系统可能同时在不同融合层次上进行融合。一个实际的融合系统是上述三种融合层次的组合。通常融合级别越高,处理速度越快,但信息压缩量越大,损失也越大。例如,在某些对实时性要求极高且对精度要求相对较低的场景下,决策级融合可能更适用;而在对精度要求较高、需要全面分析原始数据的场景中,数据层融合则更为合适。

此外,在系统设计时,要充分考虑不同层次融合的特点和优势。例如,在传感器性能较高且数据量较大的情况下,采用数据层融合可以充分利用原始数据的信息;而当传感器之间存在一定的互补性,且需要快速做出决策时,特征级融合或决策级融合可能更具优势。同时,还需权衡计算资源、通信带宽以及资金投入等方面的因素,以确保系统能够高效运行。

四、多传感器信息融合方法

多传感器信息融合的核心在于对不确定信息的处理。融合算法作为多传感器信息融合系统的关键研究点,始终备受关注。在该领域,已收获诸多成果。鉴于多传感器信息融合涵盖大量理论与技术,不存在能适配所有场景的通用算法,所以要依据不同应用背景来挑选适宜的算法。当前,多传感器信息融合算法主要有三大类别:基于物理模型的分类、基于参数的分类以及基于认知方法的分类。

A. 基于物理模型的分类

此类算法基于物理模型观察结果,获取其与真实观测对象之间的特征相关性,并依据预设的系数阈值判断两者的匹配程度。其中,卡尔曼滤波法是最突出的代表之一。

卡尔曼滤波器作为一种递归最优估计算法,是在给定系统已知数学模型的情况下,运用状态空间方程和测量模型,在统计意义上递归估计最佳融合信息。它适用于低级传感器数据的动态、实时融合。当系统具有线性动力学模型,且系统噪声和传感器噪声均为高斯分布的白噪声模型时,卡尔曼滤波能够在统计意义上为信息融合提供唯一的最优估计。此外,卡尔曼滤波的递归性质避免了信息处理过程中对大量数据的存储和计算需求。所以,卡尔曼滤波常用于较低级别的信息融合,可直接处理传感器信号并有效去除干扰信息。

B. 基于参数的分类

在多传感器融合技术的发展历程中,基于参数的分类算法是最为常见、应用和研究最为广泛的一类算法。该类算法可进一步细分为基于统计的算法和基于信息论技术的算法,其中常用的算法包括加权平均、贝叶斯估计、D-S证据理论、熵法、神经网络、聚类分析等。以下是对这些算法的具体介绍:

加权平均法

加权平均法是多传感器信息融合中一种较为简单、直观的实时融合方法。其核心在于对来自不同传感器的冗余信息进行加权处理,所得的加权值即为融合结果。权重的确定具有重要意义,它既可以体现不同传感器精度的差异,也可以将单个传感器在时间序列上的观测结果与不同权重相融合,以获取更精确的观测结果。然而,在实际应用该方法之前,必须对系统和传感器进行全面而细致的分析,从而确保权重的准确性和合理性。

贝叶斯估计

贝叶斯估计是一种将多个传感器所提供的各类不确定信息转化为概率形式,并借助概率论中的贝叶斯条件概率公式进行处理的方法。它在多传感器低级冗余数据融合中应用广泛,其处理的信息通常被描述为具有可加高斯噪声不确定性的传感器信息的概率分布。该方法以最小风险成本作为基本模型,能够在给定先验似然估计和其他观测值的基础上,对假设的似然函数进行更新。 多贝叶斯估计方法是由Durrant Whyte提出的另一种多传感器信息融合的数学和统计方法。该方法将每个传感器都视为一个贝叶斯估计,通过将每个对象的关联概率分布合成为联合后验概率分布函数,并利用具有最小似然函数的联合分布函数来提供多传感器信息的最终融合值。同时,将信息与环境融合的先验模型能够为整个环境的特征提供描述。

D-S证据理论

D-S证据理论是贝叶斯估计方法的扩展,它包含三个基本要素,即基本概率分配函数、置信函数和似然函数。其推理结构自上而下分为三个层次:第一阶段为目标合成,旨在将来自多个独立传感器的观测结果合成为一个总输出;第二阶段是推断阶段,主要作用是获取和推断传感器观测值,并将其扩展为目标报表;第三阶段为更新阶段,由于各种传感器通常存在随机误差,因此来自同一传感器的一组与时间无关的连续报告往往比单个报告更可靠,所以在进行推理和多传感器信息合成之前,需要先将传感器观测结果进行组合。 D-S证据理论利用概率区间和不确定性区间来确定多个证据下假设的似然函数,当所有假设互不相容且完整时,贝叶斯估计与D-S证据理论的结果相同。但D-S证据理论存在一些局限性,如不能有效处理相互冲突的证据、计算量呈幂指数增长、在推理链较长时使用不便以及D-S组合规则对组合较为敏感,基础概率分配的微小变化可能导致结果的巨大变化等。

人工神经网络

人工神经网络是在现代神经科学研究成果的基础上发展而来的,它是由具有学习、记忆、计算能力以及各种智能识别和处理能力的互连神经元所组成的非线性网络系统。在多传感器系统中,单个传感器所提供的环境信息往往存在一定的不确定性,而人工神经网络能够根据当前系统接收到的样本的相似性,通过网络权重在网络结构中进行表示。

在人工神经网络中实现多传感器信息融合,首先需要根据智能系统的要求和传感器信息融合的形式,对神经网络的模型、拓扑和学习规则进行选择。然后,将传感器的输入信息转化为全局输入函数,其中函数mapping被定义为相关单元的映射函数。通过人工神经网络与环境的交互作用,将环境的统计规律反映到网络本身的结构中,进而对传感器输出的信息进行学习、理解,并确定权重的分配,完成知识获取和信息融合。最后,对input pattern进行解释,并将input数据向量转换为高级logic概念。经过训练的人工神经网络在实际多传感器信息融合过程中具有良好的自适应性,尤其适用于复杂的多传感器信息融合场景,在多传感器融合系统缺乏函数模型的情况下,可通过对大量测试数据进行训练来获得网络结构和映射关系。

C. 基于认知方法的分类

基于认知的分类方法依托先验知识展开,要求对观测目标的构成以及内部关联结构有深入洞察,如此才能依据原始数据,或是依照模仿人类推理流程的属性特征来加以区分,其中,模糊逻辑理论是最为常用的手段。

模糊逻辑理论借助理论域与从属函数构建起针对多传感器信息不确定性的描述方式,后续再运用模糊理论实施合成运算,进而推导出对应的融合结果。具体而言,在推理进程里,模糊逻辑理论会把已知规则拓展为前因和结果这两个理论域之间的模糊关系,接着综合考量前因域的既有知识与经泛化获取的模糊关系,最终在当下知识体系下得出结论。这种模糊关系不但达成了多传感器输出数据空间与目标数据空间的非线性映射,还展现出极强的鲁棒性与容错性 。

五、未来发展方向

在多传感器信息融合技术领域,各类融合算法都存在自身的缺陷和局限性。其中,贝叶斯估计需要相对大量的先验知识来定义先验似然估计;D-S 证据理论高度敏感,潜在概率分配函数的较小变化可能导致结果大幅改变;加权平均法虽然简单直观,但每个传感器在不同特征维度上的精度不同,权重获取成为主要难点。基于这些问题,将不同的融合算法有机结合,形成新的信息融合方法,成为未来研究的趋势。

(一)模糊逻辑与人工神经网络的结合

人工神经网络学习收敛性差。以BP算法为例,根据误差梯度下降调整网络权重。当梯度为0时,算法无法区分非常小的点属性。因此,网络训练经常卡在某个局部最小值,难以收敛到给定的误差。相比之下,模糊逻辑理论系统构建过程中输入输出空间的划分以及从属函数及其参数的确定主要依靠个人经验,往往需要反复试错。该系统缺乏自我学习和自适应能力。将两者结合形成模糊神经网络(FNN)可以实现优势互补,实现模糊规则的自动获取和归属函数的自动生成。

(二)模糊逻辑和卡尔曼滤波的组合

卡尔曼滤波算法要求系统具有线性动力学模型,并且系统噪声和传感器噪声均为高斯分布白噪声模型。然而,在实践中,系统的状态参数会受到未知的干扰,使用不准确的模型和噪声统计来设计卡尔曼滤波会使滤波结果失真,且滤波过程容易出现分歧。为了防止这个问题,滤波器必须是自适应的。Escamilla - Ambrosio等人提出了一种基于模糊逻辑的自适应卡尔曼滤波数据融合算法。该算法使用模糊逻辑来调整滤波器的值,以尽可能接近协方差的估计值。

(三)小波变换和卡尔曼滤波的组合

每个传感器信息系统获取不同分辨率的数据信息;因此,只有解决多分辨率数据的融合技术和方法,才能更好地利用不同分辨率数据的互补信息,达到最佳的融合效果。卡尔曼滤波对非平滑信号具有很强的估计能力,可以同时处理信号的所有频率分量。小波变换不仅在时域和频域中都具有良好的定位特性,而且在时域中对高频信号和在频域中的低频信号也具有良好的分辨率,因此可以观察到目标的所有细节。因此,卡尔曼滤波和小波变换的组合可以通过互补彼此的优缺点来达到非常好的融合效果。 综上所述,多传感器信息融合技术在不断发展和完善。通过将不同的融合算法有机结合,能够有效弥补单一算法的不足,提高融合系统的性能。未来,随着技术的不断进步,多传感器信息融合技术将在更多领域得到应用和发展。

六、参考文献

[1]P. Lu and F. Dai, "An Overview of Multi-sensor Information Fusion," 2021 6th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Oita, Japan, 2021, pp. 5-9, doi:

[2]多传感器融合:提升机器人智能的关键技术-CSDN博客

[3]融合算法综述_数据融合算法-CSDN博客

[4]多传感器融合算法综述-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值