一,前言
最近安装了一下叶佬的一键安装包总感觉,没有被bug虐浑身不舒服遂,去github上重新git clone了官方的下来并部署玩玩。
二,环境配置
1、下载ChatGLM项目
官方地址:https://github.com/THUDM/ChatGLM-6B
2、配置程序运行环境
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
注:在这里,torch需要用whl手动下载GPU版本,不然多半会寄
下载方法可以参考这个博客:从零开始下载torch+cu(无痛版)
三、在HuggingFace下载chatGLM-6B模型
1,安装 Git Lfs
注:安装Git Lfs之前需要安装Git窝,还没有安装的可以参考这个教程:Git的安装教程
Git Lfs地址:https://git-lfs.com/

Git Lfs的安装也没啥要注意的,NextNext一路默认就好
2,下载相关文件
下载相关文件
1,在ChatGLM-6B-main主目录创建一个文件夹THUDM
cd到ChatGLM-6B-main\THUDM目录下然后在当前目录打开cmd执行如下指令
git lfs install #安装git lfs
git clone https://huggingface.co/THUDM/chatglm-6b-int4

这时候如果一直卡在Updating files: 100% (21/21), done.不动了,这时候可以ctrl+c直接退出。剩下的模型我们下一步手动下载。
3,在HuggingFace中下载相关模型
在这里提示,跑需要查看自身硬件适合哪个版本的模型、
| 模型名称 | 模型大小 | 模型所需GPT与内存 |
|---|---|---|
| chatglm-6b | 12.4g | 最低13G显存,16G内存 |
| chatglm-6b-int8 | 7.2G | 最低8G显存 |
| chatglm-6b-int4 | 3.6G | 最低4.3G显存 |
模型地址:chatglm-6b
模型地址:chatglm-6b-int8
模型地址:chatglm-6b-int4

chatglm-6b-int4和其他两个量化模型,下载目标内容都一致哈,就是模型地址里面的以.bin结尾的全部模型download,并拷贝进相应的地址。int4就拷贝进ChatGLM-6B-main\THUDM\chatglm-6b-int4
chatglm-6b-int4这个文件夹是第二步时候clone的时候自动新建的
4,最终运行前的项目格式
下面我以chatGLM-6b-int4为栗子
这里面的文件是由从Huggingface 上clon下载的文件和在清华镜像中下载的模型组成

四,运行项目可能会遇到的报错以及解决方法
运行web-demo.py,下面是一些报错以及解决方法
1,ModuleNotFoundError: No module named 'transformers_modules.
如果报这个错

解决方法:
pip install transformers==4.26.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
版本高了,你可以下载第一点的版本看看,我的是下载了4.26.1

2,OSError:Unable to Load weights from pytorch checkpoint file for

解决方法:
清空缓存,这个报错是由于第一次运行的时候把错误的transformers版本信息记录下来了。
参考位置:

删除这个缓存文件:transformers_modules

如果还是存在,那么下次尝试删掉之后,重新启动电脑,或许有奇效
3,AttributeError: module transformers has no attribute TFChatGLMForConditionalGeneration
如果报这个错,是因为你下载的文件不对,比如你clone的是chatglm-6b-int4,但模型下载的是chatglm-6b,两个一合并,然后就会报这个错。
解决方法:
clone与模型对应的huggingFace文件,然后再合并。
五,最终结果

进入http://127.0.0.1:7860
打下Hello World!,你好世界我来了!

如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、LLM大模型系列视频教程

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

781

被折叠的 条评论
为什么被折叠?



