0代码仅需3步!阿里云支持一键部署DeepSeek-V3/R1!

2月3日消息,阿里云宣布阿里云PAI Model Gallery支持云上一键部署DeepSeek-V3、DeepSeek-R1。 用户无需编写代码,即可通过阿里云平台实现从模型训练到部署再到推理的全过程,极大地简化了AI模型的开发流程。

根据官方介绍,一键部署DeepSeek模型的操作流程非常简单,仅需以下3步:

登陆PAI控制台,在左侧导航栏选择工作空间列表,单击指定工作空间名称,进入对应工作空间内,最后在左侧导航栏选择快速开始>Model Gallery。

ext-align: center">阿里云支持一键部署DeepSeek-V3/R1!仅需3步、0代码

进入DeepSeek模型详情页。在Model Gallery页面的模型列表中,单击找到并点击需要部署的模型卡片,例如“DeepSeek-R1-Distill-Qwen-7B”模型,进入模型详情页面。

阿里云支持一键部署DeepSeek-V3/R1!仅需3步、0代码

一键部署DeepSeek模型生成服务。单击右上角部署:目前DeepSeek-R1支持采用vLLM加速部署;DeepSeek-V3支持vLLM加速部署以及Web应用部署;DeepSeek-R1蒸馏小模型支持采用BladeLLM和vLLM加速部署。

阿里云支持一键部署DeepSeek-V3/R1!仅需3步、0代码

部署成功后,在服务页面可以点击“查看调用信息”获取调用的Endpoint和Token,想了解服务调用方式可以点击预训练模型链接,返回模型介绍页查看调用方式说明。

阿里云支持一键部署DeepSeek-V3/R1!仅需3步、0代码

阿里云支持一键部署DeepSeek-V3/R1!仅需3步、0代码

不过需要注意的是,本教程部署的模型为蒸馏过后的DeepSeek-R1-Distill-Qwen-7B,基于 DeepSeek-R1的推理能力,通过蒸馏技术将推理模式迁移到较小Qwen模型上。

同时,阿里云PAI Model Gallery也提供DeepSeek-R1、DeepSeek-V3原始模型的一键部署。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

内容概要:本文档为《DeepSeek 极简部署手册》,主要介绍 DeepSeek R1 模型的快速部署方法。首先要安装名为 Ollama 的开源工具,它简化了大语言模型(LLM)在本地设备上的运行和管理。Ollama 支持多种类型的用户轻松部署模型。安装完成后,在命令行进行简单的校验。接着从 Ollama 提供的链接中根据计算机配置情况,选择对应大小的 DeepSeek R1 版本进行安装,如7B、13B 或 33B 型号分别至少要 8GB、16GB 和 32GB 内存。以8B为例提供具体的安装命令与成功后的提示示例。最后可选安装 Cherry-Studio 以图形界面方式与模型交互并且搭建本地知识库,提高用户体验。 适合人群:有意于探索和利用大语言模型但希望避开复杂设置的研究者、开发人员或者有兴趣了解这项技术的个人用户,尤其是那些想要在本地环境中试验DeepSeek R1的人。 使用场景及目标:适用于希望通过简单骤实现在本地运行大语言模型而不必依靠云平台的情况下,使更多人有机会接近前沿AI技术。对于有兴趣深入了解或应用大型预训练模型却又担心高昂成本和繁琐配置的人来说是个很好的入门指南。 其他说明:要注意的是具体使用的DeepSeek R1的版本要根据自己的机器性能合理选取;此外若追求更加友好便捷的操作环境,则可以选择安装额外的支持软件Cherry-Studio用于界面化的交流互动与创建个性化资料库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值