保姆级教程:零代码基础也能微调Qwen3,并本地部署

 我将在本文介绍如何通过 unsloth 框架以 LoRA 的方法微调 Qwen3-14B 模型。

图片

到目前还有很多小伙伴还不明白什么时候应该微调?那么请看下图:

图片

接下来我们再看一下本文使用的 LoRA 微调方法的优势:

图片

LoRA(Low-Rank Adaptation of Large Language Models,大型语言模型的低秩自适应)是一种流行的轻量级训练技术,可以显著减少可训练参数的数量。它的工作原理是将少量的新权重插入模型中,并且只训练这些权重。这使得使用 LoRA 进行训练的速度更快、内存效率更高,并且生成的模型权重更小(只有几百 MB),更易于存储和共享。LoRA 还可以与 DreamBooth 等其他训练技术结合使用,以加速训练。

我们将在本文介绍如何微调使模型成为一个"双重人格"的助手,既能进行普通闲聊,又能在需要时切换到更严谨的思考模式来解决复杂问题,特别是数学问题。简而言之,微调后的模型获得的能力:

1. 双模式操作能力:

  • 普通对话模式: 适用于日常聊天场景。

  • 思考模式( Thinking Mode ): 用于解决需要推理的问题。

2. 数学推理能力: 能够解决数学问题并展示详细的推理过程,如示例中的"解方程(x + 2)^2 = 0"。

3. 对话能力保持: 同时保持了自然对话的能力,能够进行流畅的多轮对话。

首先我们在谷歌 Colab 上选择算力,推荐使用 T4 GPU 或者 A100 GPU:

图片

现在我们可以加载 14 B模型:

图片

我们现在添加 LoRA 适配器,因此我们只需要更新 1% 到 10% 的参数!

图片

准备数据

Qwen3 既有推理模式,也有非推理模式。因此,我们应该使用两个数据集:

  • Open Math Reasoning 数据集,该数据集曾用于赢得 AIMO(AI Mathematical Olympiad,AI 数学奥林匹克 - 进步奖 2)挑战赛!我们从使用 DeepSeek R1 的可验证推理轨迹中抽取了 10%,其准确率超过 95%。

  • 我们还利用了 Maxime Labonne 的 FineTome-100k 数据集(ShareGPT 格式)。但我们还需要将其转换为 HuggingFace 的常规多轮对话格式。

图片

我们现在将推理数据集转换为对话格式:

图片

接下来,我们将非推理数据集也转换为对话格式。

首先,我们必须使用 Unsloth 的 standardize_sharegpt 函数来修复数据集的格式。

图片

图片

非推理数据集要长得多。假设我们希望模型保留一些推理能力,但我们特别想要一个聊天模型。

让我们定义一个纯聊天数据的比例。目标是定义两种数据集的某种混合。让我们选择 25% 的推理数据和 75% 的聊天数据:

图片

最后合并数据集:

图片

训练模型

现在让我们使用 Huggingface TRL 的 SFTTrainer!我们执行 60 步来加快速度,但你可以设置 num_train_epochs=1 进行完整运行,并关闭 max_steps=None。

图片

图片

让我们开始训练模型吧!要恢复训练,请设置 trainer.train(resume_from_checkpoint = True)

图片

图片

推理

让我们通过 Unsloth 原生推理来运行模型!根据 Qwen-3 团队的说法,

  • 推理的推荐设置是:temperature = 0.6、top_p = 0.95、top_k = 20。

  • 对于基于普通聊天的推理,temperature = 0.7、top_p = 0.8、top_k = 20。

图片

保存、加载微调模型

要将最终模型保存为 LoRA 适配器,请使用 Huggingface 的 push_to_hub 进行在线保存,或使用 save_pretrained 进行本地保存。

[注意] 这仅保存 LoRA 适配器,而不是完整模型。后面我来介绍如何保存为 16 位或 GGUF 格式。

图片

现在,如果你想加载我们刚刚保存用于推理的 LoRA 适配器,请将 False 设置为 True:

图片

保存为 VLLM 的 float16

选择 merged_16bit 保存 float16,或选择 merged_4bit 保存 int4。使用 push_to_hub_merged 上传到你个人的 Hugging Face 账户!

图片

GGUF / llama.cpp 转换

使用 save_pretrained_gguf 进行本地保存,使用 push_to_hub_gguf 上传到 HF。

  • q8_0 - 快速转换。资源占用较高,但通常可以接受。

  • q4_k_m - 推荐。使用 Q6_K 处理 attention.wv 和 feed_forward.w2 张量的一半,否则使用 Q4_K。

  • q5_k_m - 推荐。使用 Q6_K 处理 attention.wv 和 feed_forward.w2 张量的一半,否则使用 Q5_K。

图片

本地部署

接下来就是将 GGUF 文件下载到本地,以便本地部署运行。

图片

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

### Qwen-7B 模型本地部署微调方法教程 #### 3. 构建基础环境 为了成功部署微调Qwen-7B模型,首先需要准备适当的基础环境。操作系统建议选用CentOS 7,配备Tesla V100-SXM2-32GB GPU设备来加速计算效率。CUDA版本应安装至12.2以确保兼容性和最佳性能表现[^1]。 ```bash # 更新系统安装依赖包 sudo yum update -y sudo yum install epel-release -y sudo yum groupinstall "Development Tools" -y ``` #### 4. 下载Qwen-7B-Chatchat模型 完成上述准备工作之后,下一步是从官方渠道获取Qwen-7B-chat模型文件。这一步骤通常涉及从指定仓库克隆项目源码或直接下载预训练权重文件。 ```bash git clone https://github.com/QwenLM/qwen.git cd qwen pip install . ``` #### 5. 配置模型本地路径 当模型及相关资源被正确放置于目标机器后,则需对其进行合理配置以便后续操作能够顺利开展。具体来说就是设定好工作目录结构以及必要的环境变量等信息[^2]。 ```python import os os.environ['TRANSFORMERS_CACHE'] = '/path/to/cache' model_path = "/local/path/to/model" ``` #### 6. 使用LLaMA-Factory框架进行微调 对于希望针对特定应用场景优化模型效果的情况而言,可以通过LLaMA-Factory这样的工具来进行有效的迁移学习。此过程中不仅可以调整超参数设置,还能借助可视化界面实时跟踪实验进展状况。 启动TensorBoard服务用于监控: ```bash tensorboard --logdir=runs ``` 编写简单的脚本执行微调任务: ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, save_steps=10_000, ) model = AutoModelForCausalLM.from_pretrained(model_path) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值