开源大模型应用编排平台:Dify、AnythingLLM、Ragflow 与 n8n 的功能与商用许可对比分析

随着大模型技术的快速发展,企业和开发者越来越关注如何高效构建、编排和部署基于大模型的应用系统。围绕这一需求,涌现出一批优秀的开源大模型应用编排平台(LLM Orchestration Frameworks),它们不仅支持与各种大模型 API 的集成,还在数据接入、多轮对话、RAG 构建、工作流自动化等方面提供了解决方案。

本文选取 DifyAnythingLLMRagflow 和 n8n 四个具有代表性的开源项目,从功能特性、许可协议、商用风险等方面进行系统对比分析,帮助开发者更科学地选择适合自身场景的工具。

一、工具概述

1. Dify

GitHub - langgenius/dify

  • 项目简介Dify 是一个集 AI 应用构建、部署、运营为一体的开源平台。它支持对话式应用、RAG(检索增强生成)应用、Agent 应用等开发模式,旨在帮助用户以最小门槛构建基于大模型的产品原型与生产应用。

  • 核心特性

    • 内置 Prompt 编排器与变量系统,简化复杂对话流程的搭建。

    • 内置对话管理器,支持记录历史、多轮上下文,保证对话连贯性。

    • 完整的 RAG 管道,涵盖文档上传、切分、Embedding、索引、检索等环节。

    • 支持 OpenAIAzureClaudeGoogle Gemini 等多种模型接入,方便模型选型。

    • 提供微调模型、SDKAPI 等二次开发能力,满足个性化定制需求。

  • 使用场景:适用于从快速构建 AI 产品原型到落地生产环境的全流程,广泛应用于企业智能客服、智能问答、SaaS 工具等场景。

  • 许可协议Apache 2.0(修改过的)

  • 商用风险Dify 官方支持商业使用,但需要特别注意以下几点:

    • 多租户服务限制:除非获得明确书面授权,否则不得将 Dify 用于多租户环境(例如 SaaS 服务),否则需要额外的商业许可。

    • UI 组件与 LOGO 使用限制:在使用 Dify 的前端界面时,不能移除或修改 LOGO 或版权信息,这对涉及前端界面的商用部署构成限制。

    • 未来版本更新Dify 的前端组件和 SaaS 服务可能会转为闭源,因此需要关注后续版本的更新和许可变化。

2. AnythingLLM

GitHub - Mintplex-Labs/anything-llm

  • 项目简介:AnythingLLM 聚焦私有化部署的聊天问答系统,特别强调“从本地文档提问”的能力,适合中小型团队快速搭建知识问答系统。

  • 核心特性

    • 支持多种文档格式上传与自动分片索引,包括 PDFTXTMarkdown 等,方便知识库构建。

    • 内嵌向量数据库,支持 Chroma 等多种向量存储方案,降低部署复杂度。

    • 提供简洁的前端界面与强大的 API 支持,兼顾易用性与扩展性。

    • 兼容 OpenAIOllamaClaudeGemini 等多种模型,灵活适配不同计算资源与性能需求。

  • 使用场景:中小团队或独立开发者部署私有 AI 助手、本地知识库问答,尤其适合资源受限但对数据隐私要求较高的场景。

  • 许可协议:根据组件不同分为 MIT 与专有协议(详见官方说明)

  • 商用风险:基础版本允许非 SaaS 商业使用,但需留意是否使用了包含限制性许可的前端/后端组件。

3. Ragflow

GitHub - infiniflow/ragflow

  • 项目简介Ragflow 是一个专注于构建多步骤 RAG 流程的开源平台,强调“流程图式”的构建思路,支持灵活编排索引、检索、问答等步骤,适合进阶开发者和研发团队。

  • 核心特性

    • 图形化流程设计,类似 n8n 工作流,通过拖拽组件即可搭建复杂 RAG 管道。

    • 多阶段 RAG 支持,涵盖文档索引、预处理、QA 优化、模型调用等模块化组件,满足精细化流程管控需求。

    • 支持私有部署,提供 Open Source 插件扩展机制,保障数据安全与功能定制。

    • 无缝集成 LangChain,丰富功能生态,加速应用开发。

  • 使用场景:适用于需要灵活定制 RAG 工作流的大模型开发团队,尤其在处理复杂文档结构与多来源数据时优势明显。

  • 许可协议Apache 2.0(商业友好型开源协议)

  • 商用风险:许可协议允许在闭源项目中使用,无需开源衍生作品;可安全用于私有部署和构建 SaaS 服务,当前无强制开源义务。但仍建议关注未来版本是否有协议调整。

4. n8n

GitHub - n8n-io/n8n

  • 项目简介n8n 是一个通用的开源自动化工作流平台,类似 Zapier,但具备更强的数据处理与脚本能力,近年逐渐集成了多种 AI 节点,成为 AI 工作流编排的主力工具之一。

  • 核心特性

    • 提供直观的低代码工作流构建界面,降低技术门槛,加速流程自动化开发。

    • 支持上百种服务与 API,包括 Hugging FaceOpenAI、Slack 等,实现异构系统集成。

    • 独特的节点式执行模型,支持 JavaScript 脚本增强,赋予工作流强大灵活性。

    • 支持私有部署,保障数据主权与安全,适合企业内部敏感业务流程自动化。

  • 使用场景:广泛应用于自动化 AI 任务编排、企业 RPA、定时调用 AI 服务、AI + 非结构化流程集成等场景。

  • 许可协议Sustainable Use License(基于 Fair-code 模型)

  • 商用风险

    • 构建并对外提供自动化平台或产品(如提供“n8n 即服务”的多租户 SaaS);

    • 白标化 n8n 并向客户收费;

    • 收集用户凭据并通过 n8n 提供服务。

    • 企业内部业务流程自动化;

    • 为单一客户部署自动化工作流;

    • 提供与 n8n 相关的咨询或支持服务(如构建工作流、开发自定义节点)。

    • 可免费用于以下情形:

    • 明确禁止的行为(除非获得商业授权):

二、开源协议对比与商用许可说明

工具名称

开源协议

商业使用限制说明

DifyApache 2.0

 + 补充协议

- 社区版可用于内部部署与定制开发
- 去除 LOGO 或构建多租户 SaaS 平台需获得商业授权

AnythingLLMMIT License

完全自由使用,可用于任何商业场景

RagflowApache 2.0

可自由用于任何商业用途,包括构建 SaaS 服务

n8nSustainable Use License

Fair-code 模型)

- 可用于企业内部使用和为单一客户部署
- 构建对外自动化平台(如多租户 SaaS)需获得商业授权

三、商用可行性分析

1. 可自由商用(MIT / Apache 2.0)

  • AnythingLLM 和 Ragflow 均使用宽松、商业友好的协议,适合构建完整产品或服务,典型应用包括:

    • 企业内部知识管理系统

    • 面向客户开放的智能问答平台

    • 多租户 SaaS 平台

2. 有条件商用(需注意授权与限制)

Dify
  • 基于 Apache 2.0 但增加了前端使用的附加限制:

    • 不可将官方前端构建为多租户 SaaS 服务

    • 不得擅自移除或替换前端 LOGO,除非获得官方授权

    • ✅ 可行场景:内部部署、自定义扩展、私有化集成

    • ⚠️ 限制说明

n8n
  • 采用 “Sustainable Use License”,并非传统开源协议(非 GPL/FOSS):

    • 构建对外服务的自动化平台(如“AI+工作流” SaaS)需获得商业授权

    • 禁止将其核心作为收费产品或平台的主要功能

    • 企业内部流程自动化

    • 为单一客户部署自动化工作流

    • ✅ 可行场景

    • ⚠️ 限制说明

四、推荐组合方案(构建 LLM 驱动平台的技术选型建议)

功能模块推荐工具说明

流程工作流编排

自研可视化前端 + Ragflow 或 n8n

n8n

 适合内部使用,Ragflow 可支持 SaaS 场景

RAG

 能力

Ragflow

 或 AnythingLLM

Ragflow

 更工程化,AnythingLLM 开箱即用

Agent

 构建

Dify

(Agent 模块)或基于 LangChain 定制

Dify

 需注意 UI 和商用限制

多租户 SaaS 架构

自主搭建 + 可插拔模块化框架

避免直接使用 n8n 和 Dify 的原生前端进行 SaaS 部署

LLM

 接入层

OpenAI

 / Mistral / 自托管模型

建议封装统一接口,便于后续模型切换与管理

五、后续关注方向

  • LLM 应用编排平台将更加模块化、低代码化,具备更强的模型无关性;

  • 许可协议的变化可能影响商用部署,建议在引入任何开源项目时同步评估其版本历史与协议变更趋势;

  • 安全性、性能、插件生态等维度也将成为企业选型的重要考虑因素;

  • 关注各工具的生态成熟度,尤其应优先评估其开箱即用的能力、插件丰富性以及与主流大模型或向量数据库的集成度。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值