随着大模型技术的快速发展,企业和开发者越来越关注如何高效构建、编排和部署基于大模型的应用系统。围绕这一需求,涌现出一批优秀的开源大模型应用编排平台(LLM Orchestration Frameworks
),它们不仅支持与各种大模型 API
的集成,还在数据接入、多轮对话、RAG
构建、工作流自动化等方面提供了解决方案。
本文选取 Dify
、AnythingLLM
、Ragflow
和 n8n
四个具有代表性的开源项目,从功能特性、许可协议、商用风险等方面进行系统对比分析,帮助开发者更科学地选择适合自身场景的工具。
一、工具概述
1. Dify
GitHub - langgenius/dify
-
项目简介:
Dify
是一个集AI
应用构建、部署、运营为一体的开源平台。它支持对话式应用、RAG
(检索增强生成)应用、Agent
应用等开发模式,旨在帮助用户以最小门槛构建基于大模型的产品原型与生产应用。 -
核心特性:
-
内置
Prompt
编排器与变量系统,简化复杂对话流程的搭建。 -
内置对话管理器,支持记录历史、多轮上下文,保证对话连贯性。
-
完整的
RAG
管道,涵盖文档上传、切分、Embedding
、索引、检索等环节。 -
支持
OpenAI
、Azure
、Claude
、Google Gemini
等多种模型接入,方便模型选型。 -
提供微调模型、
SDK
、API
等二次开发能力,满足个性化定制需求。
-
-
使用场景:适用于从快速构建
AI
产品原型到落地生产环境的全流程,广泛应用于企业智能客服、智能问答、SaaS 工具等场景。 -
许可协议:
Apache 2.0
(修改过的) -
商用风险:
Dify
官方支持商业使用,但需要特别注意以下几点:-
多租户服务限制:除非获得明确书面授权,否则不得将
Dify
用于多租户环境(例如SaaS
服务),否则需要额外的商业许可。 -
UI 组件与 LOGO 使用限制:在使用
Dify
的前端界面时,不能移除或修改LOGO
或版权信息,这对涉及前端界面的商用部署构成限制。 -
未来版本更新:
Dify
的前端组件和SaaS
服务可能会转为闭源,因此需要关注后续版本的更新和许可变化。
-
2. AnythingLLM
GitHub - Mintplex-Labs/anything-llm
-
项目简介:AnythingLLM 聚焦私有化部署的聊天问答系统,特别强调“从本地文档提问”的能力,适合中小型团队快速搭建知识问答系统。
-
核心特性:
-
支持多种文档格式上传与自动分片索引,包括
PDF
、TXT
、Markdown
等,方便知识库构建。 -
内嵌向量数据库,支持
Chroma
等多种向量存储方案,降低部署复杂度。 -
提供简洁的前端界面与强大的
API
支持,兼顾易用性与扩展性。 -
兼容
OpenAI
、Ollama
、Claude
、Gemini
等多种模型,灵活适配不同计算资源与性能需求。
-
-
使用场景:中小团队或独立开发者部署私有 AI 助手、本地知识库问答,尤其适合资源受限但对数据隐私要求较高的场景。
-
许可协议:根据组件不同分为 MIT 与专有协议(详见官方说明)
-
商用风险:基础版本允许非 SaaS 商业使用,但需留意是否使用了包含限制性许可的前端/后端组件。
3. Ragflow
GitHub - infiniflow/ragflow
-
项目简介:
Ragflow
是一个专注于构建多步骤RAG
流程的开源平台,强调“流程图式”的构建思路,支持灵活编排索引、检索、问答等步骤,适合进阶开发者和研发团队。 -
核心特性:
-
图形化流程设计,类似 n8n 工作流,通过拖拽组件即可搭建复杂
RAG
管道。 -
多阶段 RAG 支持,涵盖文档索引、预处理、
QA
优化、模型调用等模块化组件,满足精细化流程管控需求。 -
支持私有部署,提供
Open Source
插件扩展机制,保障数据安全与功能定制。 -
无缝集成
LangChain
,丰富功能生态,加速应用开发。
-
-
使用场景:适用于需要灵活定制
RAG
工作流的大模型开发团队,尤其在处理复杂文档结构与多来源数据时优势明显。 -
许可协议:
Apache 2.0
(商业友好型开源协议) -
商用风险:许可协议允许在闭源项目中使用,无需开源衍生作品;可安全用于私有部署和构建
SaaS
服务,当前无强制开源义务。但仍建议关注未来版本是否有协议调整。
4. n8n
GitHub - n8n-io/n8n
-
项目简介:
n8n
是一个通用的开源自动化工作流平台,类似Zapier
,但具备更强的数据处理与脚本能力,近年逐渐集成了多种 AI 节点,成为 AI 工作流编排的主力工具之一。 -
核心特性:
-
提供直观的低代码工作流构建界面,降低技术门槛,加速流程自动化开发。
-
支持上百种服务与
API
,包括Hugging Face
、OpenAI、Slack
等,实现异构系统集成。 -
独特的节点式执行模型,支持
JavaScript
脚本增强,赋予工作流强大灵活性。 -
支持私有部署,保障数据主权与安全,适合企业内部敏感业务流程自动化。
-
-
使用场景:广泛应用于自动化
AI
任务编排、企业RPA
、定时调用AI
服务、AI
+ 非结构化流程集成等场景。 -
许可协议:
Sustainable Use License
(基于Fair-code
模型) -
商用风险:
-
构建并对外提供自动化平台或产品(如提供“n8n 即服务”的多租户
SaaS
); -
白标化
n8n
并向客户收费; -
收集用户凭据并通过
n8n
提供服务。
-
企业内部业务流程自动化;
-
为单一客户部署自动化工作流;
-
提供与
n8n
相关的咨询或支持服务(如构建工作流、开发自定义节点)。
-
可免费用于以下情形:
-
明确禁止的行为(除非获得商业授权):
-
二、开源协议对比与商用许可说明
工具名称 | 开源协议 | 商业使用限制说明 |
---|---|---|
Dify | Apache 2.0 + 补充协议 | - 社区版可用于内部部署与定制开发 |
AnythingLLM | MIT License | 完全自由使用,可用于任何商业场景 |
Ragflow | Apache 2.0 | 可自由用于任何商业用途,包括构建 SaaS 服务 |
n8n | Sustainable Use License ( | - 可用于企业内部使用和为单一客户部署 |
三、商用可行性分析
1. 可自由商用(MIT / Apache 2.0)
-
AnythingLLM 和 Ragflow 均使用宽松、商业友好的协议,适合构建完整产品或服务,典型应用包括:
-
企业内部知识管理系统
-
面向客户开放的智能问答平台
-
多租户
SaaS
平台
-
2. 有条件商用(需注意授权与限制)
Dify
-
基于
Apache 2.0
但增加了前端使用的附加限制:-
不可将官方前端构建为多租户
SaaS
服务 -
不得擅自移除或替换前端
LOGO
,除非获得官方授权
-
✅ 可行场景:内部部署、自定义扩展、私有化集成
-
⚠️ 限制说明:
-
n8n
-
采用 “Sustainable Use License”,并非传统开源协议(非
GPL
/FOSS
):-
构建对外服务的自动化平台(如“AI+工作流”
SaaS
)需获得商业授权 -
禁止将其核心作为收费产品或平台的主要功能
-
企业内部流程自动化
-
为单一客户部署自动化工作流
-
✅ 可行场景:
-
⚠️ 限制说明:
-
四、推荐组合方案(构建 LLM 驱动平台的技术选型建议)
功能模块 | 推荐工具 | 说明 |
---|---|---|
流程工作流编排 | 自研可视化前端 + | n8n 适合内部使用, |
RAG 能力 | Ragflow 或 | Ragflow 更工程化, |
Agent 构建 | Dify (Agent 模块)或基于 | Dify 需注意 UI 和商用限制 |
多租户 | 自主搭建 + 可插拔模块化框架 | 避免直接使用 |
LLM 接入层 | OpenAI / | 建议封装统一接口,便于后续模型切换与管理 |
五、后续关注方向
-
LLM
应用编排平台将更加模块化、低代码化,具备更强的模型无关性; -
许可协议的变化可能影响商用部署,建议在引入任何开源项目时同步评估其版本历史与协议变更趋势;
-
安全性、性能、插件生态等维度也将成为企业选型的重要考虑因素;
-
关注各工具的生态成熟度,尤其应优先评估其开箱即用的能力、插件丰富性以及与主流大模型或向量数据库的集成度。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓