本文基于LLamaFactory、Qwen2-VL多模态大模进行微调,形成垂直领域大模型(如果您对大模型微调感兴趣,不限于Qwen2-VL都可以通过本文进行学习了解)。
一、应用概述
LLaMA Factory(https://github.com/hiyouga/LLaMA-Factory) 是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架之一,GitHub 星标超过 3 万。
二、使用场景
LLama Factory 由于其低代码特性,可以快速部署模型微调环境并进行测试,适用于各种场景,包括但不限于:
- LLaMA-Factory 微调基础 LLaMA 模型,提升模型在特定任务上的表现。
三、操作步骤
(一)部署前准备工作
本次部署使用到Docker和Kubernetes,请准备好Docker环境,并确保本地有可用的Kubernestes客户端工具kubectl。
Docker环境安装请参考: 安装Docker(https://docs.alayanew.com/docs/documents/tool/docker)
kubectl安装请参考:快速开始(https://docs.alayanew.com/docs/documents/useGuide/Vcluster/start)
(二)开通集群
(1)资源最低要求
点击图片可查看完整电子表格
(2)申请开通
开通集群请参考:开通弹性容器集群(https://docs.alayanew.com/docs/documents/quickStart/OpenElasticContainerCluster)
(三)镜像准备
包括以下步骤:
用户名密码:查看开通镜像仓库时的通知短信
镜像仓库地:参考镜像仓库的使用(https://docs.alayanew.com/docs/documents/storage/mirrorRepository/useMirrorRepository#use_image_repo)
镜像仓库地址 :由 镜像仓库域名/项目 组成
- LLaMA Factory(https://github.com/hiyouga/LLaMA-Factory.git)项目源码,我们将使用0.9.1版本。
Shell |
Shell |
命令说明:
这是 Docker 的一个命令,用于从 Dockerfile 构建一个新的镜像。
-t 参数用于指定构建的镜像的名称和标签。 镜像仓库地址 是可选的,通常用于指定镜像将被推送到的远程仓库地址(例如 Docker Hub 或私有仓库)。 llama-factory:0.9.1 是镜像的名称和版本标签,表示构建的镜像名为 llama-factory,版本为 0.9.1。
-f 参数用于指定 Dockerfile 的路径。 在这个命令中,Dockerfile 位于当前目录下的 docker/docker-cuda 文件夹中。
--build-arg 用于在构建过程中传递构建参数。 PIP_INDEX 是一个自定义参数,通常在 Dockerfile 中通过 ARG 指令接收。 在这里,PIP_INDEX 被设置为清华大学的 PyPI 镜像源地址(https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple),这可能是为了在构建过程中加速 Python 包的安装。
docker build 命令的最后一个参数是上下文路径(. 表示当前目录)。Docker 会将当前目录及其子目录中的文件作为构建上下文发送到 Docker 守护进程,用于构建镜像。 |
执行结果如下(一共22G,时间有点长,提前预留足够的本地磁盘):
- 登录镜像仓库,推送镜像
Shell |
示例如下:
Bash |
注意:
请将 镜像仓库地址, 域名, 用户名, 密码 替换为自己的,镜像仓库用户名及密码系统会以短信形式发送到注册账号的手机。
当执行完毕后,请检查镜像仓库中是有镜像文件llama-factory:0.9.1存在。
关于如何查看镜像仓库,请参考:使用Harbor管理镜像资源(https://docs.alayanew.com/docs/documents/storage/mirrorRepository/image)
(四)脚本准备
请下载脚本文件压缩包(https://docs.alayanew.com/assets/files/llama_factory-06f4a54c3240341bdb8098929eaf2be7.zip),并解压到本地目录。在前面下载并解压的模板脚本文件中,对所有文件进行变量替换。
需要替换的变量有:
点击图片可查看完整电子表格
(五)secret准备
secret文件是用于保存敏感信息的,如对象存储的密钥等。本次部署中需要对harbor registry的用户名和密码进行加密,并保存到secret文件中。
- 当执行过前面的步骤后,请将harbor-config.json中的内容做base64编码。linux中可以使用base64命令进行编码。或者在线网站也可以进行编码。可以参考:https://tool.lu/encdec/
- 将编码后的内容保存到harbor-secret.yaml的.dockerconfigjson字段。例如:
harbor-secret.yaml
YAML |
(六)部署应用
包含以下步骤: |
1.执行部署脚本
请在脚本目录下执行以下命令:
Shell |
确保执行过程中没有错误。请注意:其中ServiceExporter的输出需要记录,后面将以这个url访问LLaMA Factory的Web UI。
2.检查部署结果
请执行以下命令:
Shell |
如果出现以下输出,说明部署成功:
Plain Text |
其中llamafactory-6f45d5c9d6-hvq59是pod的名字,每次部署都会产生一个新的pod名字,后面的命令都需要使用这个名字。
3.进入pod,并进行初始化
请执行以下命令:
Shell |
注意
请使用实际的pod名字替换上面的llamafactory-6f45d5c9d6-hvq59。进入后,执行以下命令以确认llamafactory安装成功:
llamafactory-cli version
结果示例:
----------------------------------------------------------
| Welcome to LLaMA Factory, version 0.9.1 |
| |
| Project page: https://github.com/hiyouga/LLaMA-Factory |
----------------------------------------------------------
安装modelscope包,本教程中使用的模型从modelscope下载,请确保正确安装了modelscope:
Shell |
(七)数据准备
使用以下命令准备数据:
Shell |
(八)开始使用
进入/app/目录,执行以下命令:
Shell |
命令运行成功后,就可以以前文提到的ServiceExporter的url访问LLaMA Factory的Web UI。
微调过程:
1.加载微调数据并设置参数
① 打开UI,看到以下页面并按照下图设置参数:
②选择"Train"标签页, 选择数据集"train" 具体请参照下图:
当点击"预览数据集"按钮后,可以看到数据集的预览。
③ 如下图设置参数:
2.开始微调
按下图设置输出目录,点击"预览命令"按钮,可以看到微调命令。如果想要在命令行下运行,可以复制命令到终端运行。
Plain Text |
点击“开始”按钮,开始微调。页面最下方会显示微调过程的日志。同时,也将呈现微调的进度以及loss曲线。
微调需要一定时间,请耐心等待。微调完成后,输出框显示“训练完毕”。
3.加载微调模型及对话
①在对话框的顶部,在检查点路径中选择微调模型的路径。
②在"chat"标签页中,点击加载模型按钮,加载微调模型。
如下图,输入系统角色,上传图片,然后给出问题,系统将给出答案。
③使用测试图片测试图片1或者测试图片2进行测试。
作为对比,我们使用原生的Qwen2-VL-2B-Instruct模型进行对话。首先卸载模型:
然后使用原生模型进行对话:
四、总结
本教程介绍了如何在Alaya NeW平台上,使用LLaMA Factory微调Qwen2-VL构建文旅大模型,并使用测试图片进行了测试。用户可以根据自己的需求,选择不同的基模型,以及不同的数据集进行微调,并结合实际业务集成使用。
五、关于license
请按照LLamaFactory的版权要求使用,请参考:https://github.com/hiyouga/LLaMA-Factory/tree/main?tab=Apache-2.0-1-ov-file
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓