Grok-1 :目前参数最大的开源大模型

本文详细介绍了xAI发布的Grok-1,一个拥有3140亿参数的开源大语言模型,探讨了其技术特点、训练方法、部署以及对未来工作的展望。Grok-1凭借其专家混合架构和实时知识集成,标志着大模型革命的重要一步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在人工智能快速发展的自然语言处理领域中,xAI 正式发布了大模型 Grok-1,这是迄今参数量最大的开源大语言模型,标志着一个重要的里程碑。Grok-1 是一个拥有3140亿参数的专家混合模型,经过四个月的开发,以其创新的架构和能力脱颖而出。本文深入探讨 Grok-1 的技术复杂性、训练方法、安装部署、未来工作等内容,揭示了它在大模型革命中的地位。

技术说明

Grok-1 与 GPT 类似,也是是一个基于自回归 Transformer 的大语言模型,用于进行下一个单词预测,旨在完成生成式任务,这是自然语言处理中的基础任务。

Grok-1 拥有 3140 亿个参数,这比 OpenAI 的 GPT-3 模型大了一倍以上,GPT-3 在 2020 年发布时被认为是一项重大突破。Grok-1 采用了专家混合 (Mixture-of-Experts, MoE) 方法,其中对于给定的标记,只有 25% 的权重是活跃的,从而提高了效率和性能。Grok-1 是从 0 开始逐步开发的,利用了一个集成了 JAX 和 Rust 等技术的自定义训练堆栈,标志着人工智能开发实践的飞跃。

训练方法

基础语料

Grok-1 是预训练阶段的原始基础模型,于2023年10月结束。Grok-1 的初始版本并未针对特定任务进行优化,而是为各种自然语言处理应用提供了多功能基础。该模型的训练方案涵盖了广泛的文本数据语料库,包括截至 2023 年第 3 季度的互联网内容和来自 AI 导师的专业数据集。这种全面的训练策略对于完善 Grok-1 的能力至关重要,其卓越的基准测试成绩证明了这一点,包括在 GSM8k 上达到 62.9%、在 MMLU 上达到 73.0%、在 HumanEval 上达到63.2%、在 MATH 上达到 23.9%,展示了其出色的推理和问题解决能力。

在 2023 年匈牙利国家高中数学期末考试的实际测试中,Grok-1 以 C(59%) 的成绩通过了考试,展示了其处理复杂、未知问题的能力。

image.png

实时知识

Grok-1 的一个显著特点是其与实时知识平台的集成,使其能够获取和传播当前信息。这种能力不仅增强了模型的相关性和准确性,还使其能够进行更加动态和具有上下文意识的互动。因此,Grok-1 具备处理非常规查询并提供及时响应的能力。

image.png

安装部署

Grok-1 遵循 Apache 2.0 许可开源,即允许用户自由地使用、修改、分发源代码,还允许在修改后的代码中应用专利。

下载地址

  • github.com/xai-org/gro…
  • huggingface.co/xai-org/gro…
  • 磁力链接:magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce

image.png

image.png

步骤

  • 在 GitHub 仓库中有关于加载和运行 Grok-1 的说明,将仓库克隆到本地。

  • 从 HuggingFace 下载模型权重文件,并放入本地项目的 “checkpoints” 目录中。(或者通过磁力链接下载)

  • 打开命令行界面并运行以下命令来测试代码:

    sh
    复制代码
    pip install -r requirements.txt  
    python run.py
    
  • 注意:由于Grok-1模型的规模相当大,包含了3140亿个参数,因此需要一台具有足够GPU内存的机器来使用提供的示例代码测试该模型,这可能是一台拥有 628 GB GPU 内存的机器(每个参数 2 字节)。

未来工作

尽管发布 Grok-1 是一个重要的里程碑,但仍然有挑战需要克服。该模型的庞大参数使得开源社区难以直接进行迭代。不过预计功能量化版本将在接下来的一个月内推出,使其更容易被更广泛的研究人员和开发者使用。

Grok-1 的开源标志着通往开源AGI的关键时刻。随着 xAI 不断发展和完善其人工智能工具,我们可以期待在不久的将来看到更多突破性的发布和创新。

xAI 为 Grok 制定了令人振奋的路线图,其中包括整合形式验证以确保安全可靠,提高长文本理解和检索能力,增强对抗性鲁棒性,并融合多模态能力。这些发展将使 Grok 能够更好地协助用户,并为 AI 技术的负责任进步做出贡献。

结语

Grok-1 的发布不仅有助于推动人工智能技术的发展,还为人工智能模型的开发和融入数字互动和信息交流的方式设立了新标准。随着大模型如火如荼的蓬勃发展,让我们期待接下来的技术动向和模型迭代。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值