大模型 RAG 是什么?

大模型 RAG(Retrieval-Augmented Generation)是一种结合了检索(Retrieval)与生成(Generation)能力的先进人工智能技术,主要用于增强大型语言模型(LLMs,Large Language Models)在特定任务中的表现,特别是那些需要访问外部知识库或实时信息的任务。

RAG 模型旨在克服 LLMs 存储容量有限、难以即时获取最新信息以及在特定领域知识不足等问题,通过集成检索机制来辅助模型生成更加准确、详尽且具有针对性的答案。以下是 RAG 模型的详细说明:

1.核心思想:

检索与生成结合:RAG 将检索系统与生成模型无缝衔接,形成一个混合模型架构。当接收到一个查询或问题时,模型首先通过检索模块从大规模知识库中寻找与查询相关的信息片段(如文本片段、文档摘要、知识条目等)。

知识增强:检索到的相关信息被作为额外输入传递给生成模型,使得模型在生成回答时不仅依赖于自身的内部知识,还能利用实时检索到的外部知识资源,从而丰富其输出内容,提高答案的准确性、全面性和时效性。

2.架构组成:

检索模块:通常是一个高效的搜索引擎或索引系统,负责根据查询语句从预先构建的知识库中快速定位并提取相关信息。检索模块可能采用向量相似度搜索、关键词匹配、深度学习嵌入匹配等技术。

生成模型:通常是一个预训练的大型语言模型(如 GPT、BERT 或 T5),具备强大的语言理解和生成能力。生成模型接收查询和检索结果作为输入,综合两者信息生成最终答案。在某些实现中,检索结果可能以注意力机制的形式融入到生成模型的计算过程中。

3.工作流程:

查询阶段:用户提交一个问题或查询,RAG 模型首先通过检索模块在知识库中搜索与查询相关的文档或片段。

融合阶段:检索到的候选文档或片段被编码成向量形式,与查询语句一起作为输入传递给生成模型。生成模型学习如何有效地结合内部知识与检索到的外部知识来生成答案。

生成阶段:生成模型基于整合的信息生成回答。这一过程可能涉及解码器网络的自回归生成,其中检索结果的贡献以某种形式(如注意力权重)影响生成步骤。

4.应用场景与优势:

开放式问答:在没有预设答案范围的环境中,RAG 能够检索广泛的知识库以提供准确答案,尤其适合处理需要实时更新信息或专业知识的问题。

垂直领域问答:在医疗、法律、金融等专业领域,RAG 可以结合特定领域的知识库,提高模型在专业问答场景下的表现,如同参加一场可以查阅资料的开卷考试。

对话系统:在对话交互中,RAG 能够即时检索相关信息以提供详尽、精确的回答,提升对话系统的知识性和互动体验。

优势:RAG 模型能够利用大规模知识库,解决 LLMs 存储容量有限、知识更新滞后、领域知识不足等问题,增强模型的泛化能力、知识新鲜度和领域适应性。

5.发展与演化:

模块化设计:一些 RAG 实现采用了模块化结构,将系统划分为不同类型模块和运算符,以实现高度可扩展性和定制化配置,适应不同应用场景的需求。

综上所述,大模型 RAG 是一种结合了检索与生成技术的混合型 AI 模型,它通过引入外部知识库检索机制,增强了大型语言模型在解答复杂问题、处理实时信息以及适应特定领域知识需求等方面的能力。RAG 在开放式问答、专业领域问答、对话系统等场景中展现出显著优势,是提升语言模型实用性和智能化水平的重要发展方向。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>首先,用户的问题是:“我想了解RAG的基本概念请问RAG技术定义和工作原理”。这是一个关于RAG(Retrieval-Augmented Generation)技术的查询。 从系统级指令中,我需要: -所有行内数学表达式使用 $...$格式。 -独立公式使用$$...$$格式并单独成段。- LaTeX语法正确。-使用中文回答。-生成相关问题。 -回答中引用的段落末尾自然地添加引用标识,例如 [^1]。-回答结构清晰,帮助用户逐步解决问题,尽量保证回答真实可靠。 -参考站内引用:有多个引用关于RAG技术。用户提供的引用包括: -[^1]: RAG模型的核心思想是通过检索和生成的有机结合,弥补生成模型在处理知识密集型任务时的不足。 -[^2]:深度解析RAG技术在大模型时代的原理与实践,包括增强RAG性能的方法。- [^3]: RAG技术原理,包括Naive RAG、Advanced RAG和ModularRAG的分类。- [^4]:后处理阶段的方法,如重新排序和重要性加权。 -[^5]:AgenticChunking分块技术的工作原理。用户的问题焦点在RAG的基本概念、定义和工作原理。所以,我需要基于这些引用构建一个清晰的回答。结构回答: 1. **定义RAG**:简要解释RAG是什么。 2. **工作原理**:逐步描述RAG如何工作。3.**参考引用**:自然地融入引用。4.**生成相关问题**:在末尾添加相关问题。关键点从引用中提取: -定义:从[^1],RAG是检索增强生成,结合检索和生成模块。 -工作原理:从[^3],RAG包括索引、检索、生成三个阶段。-NaiveRAG:基本形式。- AdvancedRAG:优化版本。-Modular RAG:更灵活。 -其他细节:如 [^4]提到后处理,[^5]提到分块技术。确保使用中文回答。 生成相关问题:在回答后添加“§§相关问题§§”部分,列出几个相关问题。回答结构: -开头:直接回答定义。 -主体:分步解释工作原理。-结尾:总结并添加相关问题。数学表达式:用户的问题不涉及数学,但如果需要,确保使用正确格式。例如,如果有公式,用LaTeX表示。在引用时,自然地添加标识,如“... [^1]”。完整回答: 1.定义:RAG(Retrieval-AugmentedGeneration)是一种结合检索和生成的技术,用于增强大型语言模型在知识密集型任务中的表现。 2.工作原理:-索引阶段:将文档库分割成短的chunk,并构建向量索引。-检索阶段:根据问题和chunks的相似度检索相关文档片段。-生成阶段:以检索到的上下文为条件,生成问题的回答。参考 [^3]的分类:NaiveRAG、AdvancedRAG、Modular RAG。3.优化:如[^2]提到的增强方法,包括输入、检索器、生成器等方面的优化。4.后处理:如 [^4]提到的重新排序和重要性加权。5.分块技术:如[^5]提到的AgenticChunking。相关问题: -RAG有哪些类型? -如何优化RAG的性能?- RAG在哪些场景中应用?</think>### RAG 技术的基本概念、定义与工作原理 RAG(Retrieval-Augmented Generation,检索增强生成)是一种先进的自然语言处理技术,旨在通过结合信息检索和文本生成模块,提升大型语言模型(如 GPT-3 或 BERT)在知识密集型任务中的表现。传统的生成模型在处理复杂问题时,常因缺乏足够的外部知识而产生错误或无关的回答(即“幻觉”问题),而 RAG 通过动态检索相关背景信息,使生成过程更具准确性和可信度[^1]。下面我将逐步解释其定义和工作原理,确保内容清晰可靠。 #### 1. **RAG 技术定义** RAG 的核心思想是将检索(Retrieval)和生成(Generation)两个模块有机结合。具体来说: - **检索模块**:从大型文档库(如知识库或数据库)中实时检索与用户查询最相关的信息片段。 - **生成模块**:以检索到的信息为上下文,生成自然、连贯且准确的回答。 这种设计弥补了纯生成模型的不足,特别适用于问答系统、事实核查或知识密集型应用场景[^1][^3]。RAG 的目标是确保生成的答案不仅流畅,而且基于可靠的外部证据,减少幻觉风险。 #### 2. **RAG 工作原理** RAG 的工作流程通常分为三个阶段:索引、检索和生成。这些阶段可以基于不同实现方式(如 Naive RAG、Advanced RAG 或 Modular RAG)进行优化[^3]。以下是详细步骤: - **索引阶段(Indexing)**: - 在这一步,文档库被预处理:文档被分割成短的文本块(chunk),例如句子或段落。这些块通过嵌入模型(如 BERT)转换为向量表示,并存储在向量索引中(如使用 FAISS 或 Elasticsearch)。 - 关键点:分块技术(如 Agentic Chunking)确保语义连贯性。例如,传统方法可能因插入无关内容导致语义断裂,而优化后的分块能保持上下文完整性(如处理“Transformer 架构”的例子)[^5]。 - 优化:在 Advanced RAG 中,会添加元数据或进行数据清洗,提升索引效率和检索准确性[^3]。 - **检索阶段(Retrieval)**: - 当用户输入查询(如问题或指令)时,检索模块计算查询向量与索引中文本块向量的相似度(常用余弦相似度或点积),并返回 top-k 相关文档片段。 - 相似度计算可表示为:$ \text{similarity}(q, c) = \frac{q \cdot c}{\|q\| \|c\|} $,其中 $q$ 是查询向量,$c$ 是文本块向量。 - 优化:检索前可能进行查询重写或路由,对齐用户意图与文档语义;检索后通过重排序(如学习排序模型)或重要性加权(过滤低相关上下文)提升相关性[^4][^3]。例如,在信息检索任务中,重排序确保最相关文档优先[^4]。 - **生成阶段(Generation)**: - 生成模块(如 GPT 系列模型)以检索到的上下文为条件,生成最终回答。模型输入格式通常为:`[检索到的上下文] + [用户查询]`。 - 关键点:生成过程需确保答案与用户意图一致(如处理闲聊或提问),并避免幻觉问题。Naive RAG 直接生成回答,而 Advanced RAG 可能引入微调或强化学习进一步优化输出[^3]。 - 输出示例:如果用户问“Transformer 架构的核心是什么?”,检索模块提供相关文档片段,生成模块输出“Transformer 的核心是自注意力机制”[^5]。 整个流程如下图所示(简化表示): ``` 用户查询 → 检索模块(从索引获取相关上下文) → 生成模块(生成最终回答) ``` #### 3. **RAG 的分类与优化** 根据实现复杂度,RAG 可分为三类: - **Naive RAG**:基本形式,仅包含索引、检索、生成三步骤,适用于简单场景[^3]。 - **Advanced RAG**:在检索前后添加优化,如数据清洗、查询扩充或上下文压缩,提升准确性和效率[^3][^2]。 - **Modular RAG**:模块化设计,融合搜索引擎、多回答融合等功能,适应灵活需求(如多轮对话)[^3]。 RAG 的优势在于其可扩展性:通过检索外部知识,它降低了模型训练对海量参数的依赖,同时提升了在开放域任务中的表现[^1][^2]。然而,挑战包括检索质量对生成结果的影响,以及如何处理用户意图的灵活性[^3]。 #### 总结 RAG 技术通过检索增强生成,解决了传统语言模型在知识密集型任务中的局限性,其核心是索引、检索和生成的协同工作。随着优化方法(如分块技术或重排序)的引入,RAG 在问答系统、内容生成等场景中展现出强大潜力[^1][^2][^3]。如果您有具体应用场景或进一步疑问,欢迎继续探讨!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值