大模型 RAG(Retrieval-Augmented Generation)是一种结合了检索(Retrieval)与生成(Generation)能力的先进人工智能技术,主要用于增强大型语言模型(LLMs,Large Language Models)在特定任务中的表现,特别是那些需要访问外部知识库或实时信息的任务。
RAG 模型旨在克服 LLMs 存储容量有限、难以即时获取最新信息以及在特定领域知识不足等问题,通过集成检索机制来辅助模型生成更加准确、详尽且具有针对性的答案。以下是 RAG 模型的详细说明:
1.核心思想:
检索与生成结合:RAG 将检索系统与生成模型无缝衔接,形成一个混合模型架构。当接收到一个查询或问题时,模型首先通过检索模块从大规模知识库中寻找与查询相关的信息片段(如文本片段、文档摘要、知识条目等)。
知识增强:检索到的相关信息被作为额外输入传递给生成模型,使得模型在生成回答时不仅依赖于自身的内部知识,还能利用实时检索到的外部知识资源,从而丰富其输出内容,提高答案的准确性、全面性和时效性。
2.架构组成:
检索模块:通常是一个高效的搜索引擎或索引系统,负责根据查询语句从预先构建的知识库中快速定位并提取相关信息。检索模块可能采用向量相似度搜索、关键词匹配、深度学习嵌入匹配等技术。
生成模型:通常是一个预训练的大型语言模型(如 GPT、BERT 或 T5),具备强大的语言理解和生成能力。生成模型接收查询和检索结果作为输入,综合两者信息生成最终答案。在某些实现中,检索结果可能以注意力机制的形式融入到生成模型的计算过程中。
3.工作流程:
查询阶段:用户提交一个问题或查询,RAG 模型首先通过检索模块在知识库中搜索与查询相关的文档或片段。
融合阶段:检索到的候选文档或片段被编码成向量形式,与查询语句一起作为输入传递给生成模型。生成模型学习如何有效地结合内部知识与检索到的外部知识来生成答案。
生成阶段:生成模型基于整合的信息生成回答。这一过程可能涉及解码器网络的自回归生成,其中检索结果的贡献以某种形式(如注意力权重)影响生成步骤。
4.应用场景与优势:
开放式问答:在没有预设答案范围的环境中,RAG 能够检索广泛的知识库以提供准确答案,尤其适合处理需要实时更新信息或专业知识的问题。
垂直领域问答:在医疗、法律、金融等专业领域,RAG 可以结合特定领域的知识库,提高模型在专业问答场景下的表现,如同参加一场可以查阅资料的开卷考试。
对话系统:在对话交互中,RAG 能够即时检索相关信息以提供详尽、精确的回答,提升对话系统的知识性和互动体验。
优势:RAG 模型能够利用大规模知识库,解决 LLMs 存储容量有限、知识更新滞后、领域知识不足等问题,增强模型的泛化能力、知识新鲜度和领域适应性。
5.发展与演化:
模块化设计:一些 RAG 实现采用了模块化结构,将系统划分为不同类型模块和运算符,以实现高度可扩展性和定制化配置,适应不同应用场景的需求。
综上所述,大模型 RAG 是一种结合了检索与生成技术的混合型 AI 模型,它通过引入外部知识库检索机制,增强了大型语言模型在解答复杂问题、处理实时信息以及适应特定领域知识需求等方面的能力。RAG 在开放式问答、专业领域问答、对话系统等场景中展现出显著优势,是提升语言模型实用性和智能化水平的重要发展方向。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
全套 《LLM大模型入门+进阶学习资源包》↓↓↓ 获取~