|为什么推荐|
自2022年底ChatGPT掀起AI革命以来,大语言模型(LLM)技术快速迭代发展,从GPT-4到Claude 2,从文心一言到通义千问,大模型技术以惊人的速度发展。大模型工具可能已经在生活中充当了我们的创作助手、咨询专家、甚至情感陪护等,但这样的应用还远远不能发挥出大模型的真正价值。
当前大模型被普遍看好的两个专业应用方向是RAG(Retrieval-Augmented Agenerated,检索增强生成)与Agent(AI智能体)。在企业实际应用场景中,RAG(检索增强生成)因其较好的成本效益比和灵活性,成为越来越多企业的首选,成为最受关注的技术方案之一。 【文末免费送书】
然而,真正能够系统性地介绍企业级RAG应用开发与优化的技术书籍却凤毛麟角。今天要向大家推荐的这本**《基于大模型的RAG应用开发与优化 — 构建企业级LLM应用》**,恰恰填补了这一领域的空白。
全书用500多页的篇幅,讲述了RAG的基础架构和实现原理,并**深入探讨了企业级应用中的各种优化策略和最佳实践。**从最基础的向量检索到高级的混合检索策略,从简单的问答系统到复杂的多轮对话,书中都提供了详实的代码示例和实现思路,是一本非常全面及系统的RAG应用的学习书籍。
|本书主要内容及特点|
值得一提的是,**本书基于LlamaIndex框架来讲解RAG的实现。****相比其他框架,LlamaIndex更专注于RAG场景,API设计也更加简洁优雅。**但作者并没有局限于框架本身,而是着重剖析了RAG的核心原理,这使得读者可以轻松地将这些知识迁移到其他框架中。
从内容编排上看, 本书采用了循序渐进的方式。 首先介绍最基础、最常见的RAG应用架构,然后逐步深入到不同的RAG实现方式和优化策略,最后还探讨了几种新型RAG范式的原理与实现。**这样的结构设计让读者能够根据自身水平,找到最适合的切入点。**无论是进入AI领域的初学者,还是已经有一定基础的进阶者,都能从本书中找到适合自己的内容。
此外,书中对于企业级RAG应用优化策略的观点比较贴切实际需求的。 内容都来自实战经验的总结,包括如何处理长文本、如何优化检索效果、如何提升响应速度等关键问题,涉及到了企业实际落地过程中必须面对的挑战。
|作者简介|
严灿平
毕业于南京理工大学计算机系,南京大学工商管理硕士。先后就职于联创(后与亚信科技合并)担任软件工程师与设计师,甲骨文中国(Oracle)担任中国区企业架构部首席架构师,上海慧问信息科技有限公司担任合伙人兼技术总监。现为独立IT咨询顾问,公众号“AI大模型应用实践”主理人。拥有超过20年的企业软件从业经验,专注于企业软件架构设计、互联网时代传统行业的IT转型、人工智能与大数据技术在企业应用的创新等。
曾担任多项大型企业级软件系统核心架构师与咨询师,参与包括中国移动、中国电信等通信行业客户的核心业务运营支撑系统建设、智慧城市与政务行业互联网转型的IT咨询与规划。精通多种计算机软件开发技术与IT架构方法论,对移动互联网、大数据、人工智能在企业领域应用有深入的研究与实施经验。
免费领书
**这次沃恩智慧,**免费送大家200本正版书籍《基于大模型的RAG应用开发与优化 — 构建企业级LLM应用》,免费包邮送!
**
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓