RSEI主成分分析结果不对,啥原因造成的?

        如上图,pc1的贡献率只有65%左右,特征向量中第一行4个值全是负的,不应该两正两负吗?前面分量指标计算都没啥问题,水体掩膜做了,异常值处理了 ,归一化也是对的,为啥结果是这样的,搞不懂,有没有大佬指点一二?

        上面是2021年的主成分统计结果,下面是2001年的,结果都差不多,不知道啥原因

### 主成分分析中 NDVI 出现负值的原因主成分分析 (PCA) 的过程中,NDVI 可能会显示出负值的情况。这种现象通常不是由数据本身引起的,而是由于 PCA 过程中的某些特性所致。 #### 数据标准化的影响 当执行 PCA 之前的数据预处理阶段,如果进行了标准化操作,则原始变量的均值会被调整到零附近[^1]。这意味着原本具有正向意义的指标(如 NDVI),其数值分布可能会跨越零点,在新的坐标系下表现为既有正值也有负值。因此,在经过变换后的主成分空间里观察到 NDVI 负值是正常的统计学表现形式之一。 #### 主成分方向的选择 另一个原因是主成分的方向选择问题。PCA 是通过寻找能够最大化方差的新轴来定义主成分的。这些新轴并不一定保持原有特征之间的相对关系不变;相反,为了更好地解释总体变异情况,有时会选择与原特征呈反相位的相关模式作为某个特定主成分的主要构成部分。在这种情况下,即使像 NDVI 这样的正面贡献因子也可能被赋予负权重以适应整体最优解的要求[^2]。 ### 解决方法 针对上述原因提出的解决方案如下: - **重新审视输入矩阵**:确认是否有必要对所有参与计算的变量实施相同的缩放策略。对于那些本质上应该维持固定极性的参数(例如植被指数),考虑单独处理而不与其他类型的测量混在一起做统一转换。 - **理解并接受结果**:认识到这是数学建模过程的一部分,并不一定反映实际物理含义上的改变。只要最终得到的结果合理且符合预期的趋势即可视为有效解答。不过仍需谨慎解读具体分量的意义及其绝对大小所传达的信息。 ```r # 示例代码展示如何进行PCA前的数据准备以及后续解析 library(FactoMineR) # 假设df是一个包含多个环境指标的数据框, 包括NDVI等 pca_result <- PCA(df[, c("NDVI", "Wet", "LST", "NDBSI")], scale.unit=TRUE) # 查看各个主成分得分图 plot(pca_result$ind$coord ~ pca_result$var$cos2[,1]) # 获取旋转后的载荷矩阵查看各变量在PCs上的投影 loadings_matrix <- get_pca_var(pca_result)$contrib print(loadings_matrix) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值