1.实验原理
1.1遥感生态指数RSEI概述
研究发现绿度、湿度、干度和热度是4个与生态环境质量有直接关系的评价指标。利用这四个评估指标,可以建立反映生态环境质量的遥感生态指数RSEI。
R
S
E
I
可表示为
G
,
W
,
T
,
D
四个指数的函数,即:
RSEI可表示为G,W,T,D四个指数的函数,即:
RSEI可表示为G,W,T,D四个指数的函数,即:
R S E I = f ( G , W , T , D ) RSEI=f(G,W,T,D) RSEI=f(G,W,T,D)
式中: R S E I 是遥感生态指数, G 是绿度、 W 是湿度、 T 是热度、 D 是干度。 式中: RSEI是遥感生态指数,G是绿度、W是湿度、T是热度、D是干度 。 式中:RSEI是遥感生态指数,G是绿度、W是湿度、T是热度、D是干度。
这4个指标的信息可以从遥感影像中获取,采用植被指数、裸土指数、湿度分量、地表温度就可以分别代表绿度、干度、湿度和热度。其具体的表达式为:RSEI=(NDVI,Wet,LST,NDBSI)
植被覆盖度(NDVI );湿度分量(Wet ),地表温度(LST );建筑 21111111111物与裸土指数(NDBSI )。
1.2指标构建
-
**绿度指数:**NDVI是一种被广泛使用的植被指数,与植被的叶面积、生物量以及植被的覆盖度都有着紧密的联系,可以有效地反映植被的生长期和覆盖状况等重要地物的物理性质。因此,以 NDVI表示绿度指数,其表达式为:
N D V I = ( ρ N I R − ρ R e d ) / ( ρ N I R + ρ R e d ) NDVI=(ρ_NIR-ρ_Red)/(ρ_NIR+ρ_Red ) NDVI=(ρNIR−ρRed)/(ρNIR+ρRed)式中: ρ R e d 和 ρ N I R 分别为地物多光谱传感器中的红光波段和近红外波段的反射率。 式中:ρ_Red和ρ_NIR分别为地物多光谱传感器中的红光波段和近红外波段的反射率。 式中:ρRed和ρNIR分别为地物多光谱传感器中的红光波段和近红外波段的反射率。
-
**湿度指数:**土壤水分是气候、环境、生态等领域研究与应用的重要组成部分,是反映区域生态环境状态的重要指标,也是地面环境监测的重要手段。在遥感技术中,用缨帽变换能够对土壤水分进行良好的反演,因此用Wetness表示湿度指数,公式如下:
W e t T M = 0.0315 ρ 1 + 0.2021 ρ 2 + 0.3102 ρ 3 + 0.1594 ρ 4 − 0.6806 ρ 5 − 0.6109 ρ 7 Wet_TM=0.0315ρ_1+0.2021ρ_2+0.3102ρ_3+0.1594ρ_4-0.6806ρ_5-0.6109ρ_7 WetTM=0.0315ρ1+0.2021ρ2+0.3102ρ3+0.1594ρ4−0.6806ρ5−0.6109ρ7W e t E T M = 0.2626 ρ 1 + 0.2141 ρ 2 + 0.0926 ρ 3 + 0.0656 ρ 4 − 0.7629 ρ 5 − 0.5388 ρ 7 Wet_ETM=0.2626ρ_1+0.2141ρ_2+0.0926ρ_3+0.0656ρ_4-0.7629ρ_5-0.5388ρ_7 WetETM=0.2626ρ1+0.2141ρ2+0.0926ρ3+0.0656ρ4−0.7629ρ5−0.5388ρ7
W e t O L I = 0.1511 ρ 2 + 0.1972 ρ 3 + 0.3283 ρ 4 + 0.3407 〖 b ρ 〗 5 − 0.7117 b 6 − 0.4559 b 7 Wet_OLI=0.1511ρ_2+0.1972ρ_3+0.3283ρ_4+0.3407〖bρ〗_5-0.7117b_6-0.4559b_7 WetOLI=0.1511ρ2+0.1972ρ3+0.3283ρ4+0.3407〖bρ〗5−0.7117b6−0.4559b7
式中: ρ i ( i = 1 , 2 , … , 7 )分别为地物影像各个波段的反射率。 式中:ρ_i(i=1,2,…,7)分别为地物影像各个波段的反射率。 式中:ρi(i=1,2,…,7)分别为地物影像各个波段的反射率。
-
**热度指数:**以地表温度来表示该指数,采用大气校正法对其进行反演。
L 6 = g a i n × D N + b i a s L_6=gain×DN+bias L6=gain×DN+biasT = K 2 / 〖 l n ( 〗〖 K 1 ⁄ L 6 + 1 ) 〗 T=K_2/〖ln(〗〖K_1⁄L_6 +1)〗 T=K2/〖ln(〗〖K1⁄L6+1)〗
-
式中: L 6 为 L a n d s a t 多光谱传感器在第 6 波段的辐射值或 L a n d s a t 8 / O L I 多光谱传感器在第 10 波段的辐射值; 式中:L_6为Landsat多光谱传感器在第6波段的辐射值或Landsat8/OLI多光谱传感器在第10波段的辐射值; 式中:L6为Landsat多光谱传感器在第6波段的辐射值或Landsat8/OLI多光谱传感器在第10波段的辐射值;
为地物灰度值; g a i n 为第 6 / 10 波段的增益值, b i a s 为第 6 / 10 波段的偏置值; T 为传感器处温度值; 为地物灰度值;gain为第6/10波段的增益值,bias为第6/10波段的偏置值;T为传感器处温度值; 为地物灰度值;gain为第6/10波段的增益值,bias为第6/10波段的偏置值;T为传感器处温度值;
K 1 和 K 2 分别为定标参数。 K_1和K_2分别为定标参数。 K1和K2分别为定标参数。
要得到该区域的 L S T ,需对传感器的温度值 T 进行以下的发射率校正: 要得到该区域的LST,需对传感器的温度值T进行以下的发射率校正: 要得到该区域的LST,需对传感器的温度值T进行以下的发射率校正:
L S T = T / ( ( 1 + λ T ⁄ ρ ) l n ε ) LST=T/((1+λT⁄ρ)lnε ) LST=T/((1+λT⁄ρ)lnε)
λ 为 L a n d s a t 5 / T M 多光谱传感器在第六波段的中心波长; λ为Landsat5/TM多光谱传感器在第六波段的中心波长; λ为Landsat5/TM多光谱传感器在第六波段的中心波长;
ρ 为常量 ε 为发射率 ρ为常量 ε为发射率 ρ为常量ε为发射率
-
**干度指数:**由裸土指数SI和城市建筑指数IBI来构建,其范围是[-1,1],指数值越大,即越干燥;反之越湿润。
N D B S I = ( I B I + S I ) / 2 NDBSI=(IBI+SI)/2 NDBSI=(IBI+SI)/2I B I 表征城市建筑情况的建筑指数; S I 为土壤指数。其中, IBI表征城市建筑情况的建筑指数;SI为土壤指数。其中, IBI表征城市建筑情况的建筑指数;SI为土壤指数。其中,
I B I = ( ( 2 ρ S W I 1 ) / ( ρ S W I 1 + ρ N I R ) − [ ρ N I R ⁄ ( ( ρ N I R + ρ R e d ) ) + ρ G r e e n ⁄ ( ( ρ G r e e n + ρ S W I 1 ) ) ] ) / ( ( 2 ρ S W I 1 ) / ( ρ S W I 1 + ρ N I R ) + [ ρ N I R ⁄ ( ( ρ N I R + ρ R e d ) ) + ρ G r e e n ⁄ ( ( ρ G r e e n + ρ S W I 1 ) ) ] ) IBI=((2ρ_SWI1)/(ρ_SWI1+ρ_NIR )-[ρ_NIR⁄((ρ_NIR+ρ_Red ) )+ρ_Green⁄((ρ_Green+ρ_SWI1 ) )])/((2ρ_SWI1)/(ρ_SWI1+ρ_NIR )+[ρ_NIR⁄((ρ_NIR+ρ_Red ) )+ρ_Green⁄((ρ_Green+ρ_SWI1 ) )]) IBI=((2ρSWI1)/(ρSWI1+ρNIR)−[ρNIR⁄((ρNIR+ρRed))+ρGreen⁄((ρGreen+ρSWI1))])/((2ρSWI1)/(ρSWI1+ρNIR)+[ρNIR⁄((ρNIR+ρRed))+ρGreen⁄((ρGreen+ρSWI1))])
S I = ( ( ρ S W I 1 + ρ R e d ) − ( ρ N I R + ρ B l u e ) ) / ( ( ρ S W I 1 + ρ R e d ) + ( ρ N I R + ρ B l u e ) ) SI=((ρ_SWI1+ρ_Red )-(ρ_NIR+ρ_Blue ))/((ρ_SWI1+ρ_Red )+(ρ_NIR+ρ_Blue ) ) SI=((ρSWI1+ρRed)−(ρNIR+ρBlue))/((ρSWI1+ρRed)+(ρNIR+ρBlue))
1.3综合指标构建
主成分分析(PCA)是将高维数据进行降维并采用尽量少的综合指标代替复杂的原始数据,并最大程度地反映原始数据所包含的信息的统计方法;其主要原理是通过旋转位于数据中心的坐标轴,并将数据投影到坐标轴上,达到将数据压缩到几个主要的相互垂直的分量上。将上述四种指数叠加后,采用PCA方法对其进行综合评价。因为4个指数的量纲都是不同的,所以如果直接使用PCA,将会对RSEI的计算结果造成很大影响,然后将四个指标分别进行归一化处理[0,1]。RSEI0即最终所构建的RSEI([0,1])。当RSEI0值趋近于1时,则表明该区域的生态环境质量越好,反之亦然。
〖 R S E I 〗 0 = ( 〖 P C 〗 1 − 〖 P C 〗 1 M i n ) / ( 〖 P C 〗 1 M a x − 〖 P C 〗 1 M i n ) 〖RSEI〗_0=(〖PC〗_1-〖PC〗_1Min)/(〖PC〗_1Max-〖PC〗_1Min ) 〖RSEI〗0=(〖PC〗1−〖PC〗1Min)/(〖PC〗1Max−〖PC〗1Min)
公式中:〖 P C 〗 1 为不同时期的第一主成分分量; 公式中:〖PC〗_1为不同时期的第一主成分分量; 公式中:〖PC〗1为不同时期的第一主成分分量;
〖 P C 〗 1 M a x 为第一主成分中的最大值; 〖PC〗_1Max为第一主成分中的最大值; 〖PC〗1Max为第一主成分中的最大值;
〖 P C 〗 1 M i n 为第一主成分中的最小值。 〖PC〗_1Min为第一主成分中的最小值。 〖PC〗1Min为第一主成分中的最小值。
1.4流程图
1.5实验步骤
-
修改头文件确保Landset5 TM L2在ENVI中可以打开
-
指标获取
-
NDVI
-
WET
0.0315 ∗ f l o a s t ( b 1 ) + 0.2021 ∗ f l o a t ( b 2 ) + 0.3102 ∗ f l o a t ( b 3 ) + 0.1549 ∗ f l o a t ( b 4 ) − 0.6806 ∗ f l o a t ( b 5 ) − 0.6109 ∗ f l o a t ( b 7 ) 0.0315*floast(b1)+0.2021*float(b2)+0.3102*float(b3)+0.1549*float(b4)-0.6806*float(b5)-0.6109*float(b7) 0.0315∗floast(b1)+0.2021∗float(b2)+0.3102∗float(b3)+0.1549∗float(b4)−0.6806∗float(b5)−0.6109∗float(b7) -
LST
以地表温度来表示该指数,采用大气校正法对其进行反演。
L 6 = g a i n × D N + b i a s L_6=gain×DN+bias L6=gain×DN+biasT = K 2 / 〖 l n ( 〗〖 K 1 ⁄ L 6 + 1 ) 〗 T=K_2/〖ln(〗〖K_1⁄L_6 +1)〗 T=K2/〖ln(〗〖K1⁄L6+1)〗
-
式中: L 6 为 L a n d s a t 多光谱传感器在第 6 波段的辐射值或 L a n d s a t 8 / O L I 多光谱传感器在第 10 波段的辐射值;为地物灰度值; g a i n 为第 6 / 10 波段的增益值, b i a s 为第 6 / 10 波段的偏置值; T 为传感器处温度值; K 1 和 K 2 分别为定标参数。要得到该区域的 L S T ,需对传感器的温度值 T 进行以下的发射率校正: 式中:L_6为Landsat多光谱传感器在第6波段的辐射值或Landsat8/OLI多光谱传感器在第10波段的辐射值; 为地物灰度值;gain为第6/10波段的增益值,bias为第6/10波段的偏置值;T为传感器处温度值; K_1和K_2分别为定标参数。 要得到该区域的LST,需对传感器的温度值T进行以下的发射率校正: 式中:L6为Landsat多光谱传感器在第6波段的辐射值或Landsat8/OLI多光谱传感器在第10波段的辐射值;为地物灰度值;gain为第6/10波段的增益值,bias为第6/10波段的偏置值;T为传感器处温度值;K1和K2分别为定标参数。要得到该区域的LST,需对传感器的温度值T进行以下的发射率校正:
L S T = T / ( ( 1 + λ T ⁄ ρ ) l n ε ) LST=T/((1+λT⁄ρ)lnε ) LST=T/((1+λT⁄ρ)lnε)
λ 为 L a n d s a t 5 / T M 多光谱传感器在第六波段的中心波长; λ为Landsat5/TM多光谱传感器在第六波段的中心波长; λ为Landsat5/TM多光谱传感器在第六波段的中心波长;
ρ 为常量 ε 为发射率 ρ为常量 ε为发射率 ρ为常量ε为发射率
-
NDBSI:由裸土指数SI和城市建筑指数IBI来构建,其范围是[-1,1],指数值越大,即越干燥;反之越湿润
N D B S I = ( I B I + S I ) / 2 NDBSI=(IBI+SI)/2 NDBSI=(IBI+SI)/2
式中:
I B I = ( 2 ∗ f l o a t ( b 5 ) / ( f l o a t ( b 5 ) + f l o a t ( b 4 ) ) ) − ( ( f l o a t ( b 4 ) / ( f l o a t ( b 4 ) + f l o a t ( b 3 ) ) ) + ( f l o a t ( b 2 ) / ( f l o a t ( b 2 ) + f l o a t ( b 4 ) ) ) ) / ( 2 ∗ f l o a t ( b 5 ) / ( f l o a t ( b 5 ) + f l o a t ( b 4 ) ) ) + ( ( f l o a t ( b 4 ) / ( f l o a t ( b 4 ) + f l o a t ( b 3 ) ) ) + ( f l o a t ( b 2 ) / ( f l o a t ( b 2 ) + f l o a t ( b 4 ) ) ) ) IBI=(2*float(b5)/(float(b5)+float(b4)))-((float(b4)/(float(b4)+float(b3)))+(float(b2)/(float(b2)+float(b4))))/(2*float(b5)/(float(b5)+float(b4)))+((float(b4)/(float(b4)+float(b3)))+(float(b2)/(float(b2)+float(b4)))) IBI=(2∗float(b5)/(float(b5)+float(b4)))−((float(b4)/(float(b4)+float(b3)))+(float(b2)/(float(b2)+float(b4))))/(2∗float(b5)/(float(b5)+float(b4)))+((float(b4)/(float(b4)+float(b3)))+(float(b2)/(float(b2)+float(b4))))S I = ( ( f l o a t ( b 5 ) + f l o a t ( b 3 ) ) − ( f l o a t ( b 4 ) + f l o a t ( b 1 ) ) ) / ( ( f l o a t ( b 3 ) ) + ( f l o a t ( b 4 ) + f l o a t ( b 1 ) ) ) SI=((float(b5)+float(b3))-(float(b4)+float(b1)))/((float(b3))+(float(b4)+float(b1))) SI=((float(b5)+float(b3))−(float(b4)+float(b1)))/((float(b3))+(float(b4)+float(b1)))
-
-
指标归一化
对各个指标进行快速统计,
( b 1 l t m i n ) ∗ 0 + ( ( b 1 g t m i n ) a n d ( b 1 l t m a x ) ) ∗ ( b 1 − m i n ) / ( m a x − m i n ) + ( b 1 g t m a x ) ∗ 1 (b1 lt min)*0+((b1 gt min)and(b1 lt max))*(b1-min)/(max - min)+(b1 gt max)*1 (b1ltmin)∗0+((b1gtmin)and(b1ltmax))∗(b1−min)/(max−min)+(b1gtmax)∗1-
NDVI归一化
( b 1 l t − 0.136 ) ∗ 0 + ( ( b 1 g t − 0.136 ) a n d ( b 1 l t 0.5515 ) ) ∗ ( b 1 − ( − 0.136 ) ) / ( 0.5515 + 0.136 ) + ( b 1 g e 0.5515 ) ∗ 1 (b1 lt -0.136)*0+((b1 gt -0.136)and(b1 lt 0.5515))*(b1-(-0.136))/(0.5515+0.136)+(b1 ge 0.5515)*1 (b1lt−0.136)∗0+((b1gt−0.136)and(b1lt0.5515))∗(b1−(−0.136))/(0.5515+0.136)+(b1ge0.5515)∗1 -
Wet归一化
( f l o a t ( b 1 ) l t − 28412 ) ∗ 0 + ( ( b 1 g t − 28412 ) a n d ( b 1 l t − 1068 ) ) ∗ ( f l o a t ( b 1 ) − ( − 28412 ) ) / ( − 1068 + 28412 ) + ( f l o a t ( b 1 ) g t − 1068 ) ∗ 1 (float(b1) lt -28412)*0+((b1 gt -28412) and (b1 lt -1068))*(float(b1)-(-28412))/(-1068+28412)+(float(b1) gt -1068)*1 (float(b1)lt−28412)∗0+((b1gt−28412)and(b1lt−1068))∗(float(b1)−(−28412))/(−1068+28412)+(float(b1)gt−1068)∗1 -
LST归一化
( b 1 l t 43328 ) ∗ 0 + ( ( b 1 g t 43328 ) a n d ( b 1 l t 54521 ) ) ∗ ( f l o a t ( b 1 ) − 43328 ) / ( 54521 − 43328 ) + ( b 1 g t 54521 ) ∗ 1 (b1 lt 43328)*0+((b1 gt 43328) and (b1 lt 54521))*(float(b1)-43328)/(54521 - 43328)+(b1 gt 54521)*1 (b1lt43328)∗0+((b1gt43328)and(b1lt54521))∗(float(b1)−43328)/(54521−43328)+(b1gt54521)∗1 -
NDBSI归一化
( b 1 l t ( − 0.107143 ) ) ∗ 0 + ( ( b 1 g t ( − 0.107143 ) ) a n d ( b 1 l t 0.759997 ) ) ∗ ( b 1 − ( − 0.107143 ) ) / ( 0.759997 − ( − 0.107143 ) ) + ( b 1 g t 0.759997 ) ∗ 1 (b1 lt (-0.107143))*0+((b1 gt (-0.107143))and(b1 lt 0.759997))*(b1-(-0.107143))/(0.759997 - (-0.107143))+(b1 gt 0.759997)*1 (b1lt(−0.107143))∗0+((b1gt(−0.107143))and(b1lt0.759997))∗(b1−(−0.107143))/(0.759997−(−0.107143))+(b1gt0.759997)∗1
-
-
波段合成
(输入顺序很重要,按照输入顺序制定B1、B2等波段)Build Layer Stack
-
主成分分析
输入波段合成结果,并建立掩膜,用数值划分(最小值为0.00001,以去除0值的影响)
RSEI/1735804102036.png)
输入波段合成结果,并建立掩膜,用数值划分(最小值为0.00001,以去除0值的影响)
[外链图片转存中…(img-3vjrXWi2-1735868500289)]
[外链图片转存中…(img-saiTVB4b-1735868500289)]