01 .
前言
(一)投顾行业历程
全球投顾行业按照行业主要服务模式可以分为三个阶段:卖方投顾、买方投顾以及智能投顾。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
卖方投顾阶段:这一阶段确立了投顾业务规则,行业开始规范发展。该阶段以卖方投顾为主,所谓卖方投顾通常指的是金融机构或个人为投资者提供投资建议和金融产品推荐服务,其收入主要来源于销售金融产品的佣金或手续费;
买方投顾阶段:在卖方投顾模式下,投顾业务收入主要来源于基金销售费用,一方面增加了投资成本,另一方面也会导致投资者的投资体验较差。因此,更重视投资者收益且收费更低的买方投顾模式开始受到青睐。所谓买方投顾,即以客户利益为核心的财富管理服务模式。区别于传统的卖方投顾模式,在买方投顾模式下,投顾机构的收入主要来自于客户资产的管理费;
智能投顾阶段:新兴创业平台上线智能投顾业务,智能投顾兴起。智能投顾结合了人工智能、大数据和算法的金融服务,旨在提供自动化、个性化的投资建议和管理服务。相比于传统投资顾问,智能投顾具有低费用、低门槛、易操作和高透明度等新特征。
(二)AI大模型在投顾行业的应用
大模型为 AI 对金融的赋能创造了更多想象空间。相比于传统判别式AI,大模型的通用泛化能力更强,能够处理更加复杂和多样化的内容生成、信息理解、多轮对话等需求。
在投顾领域,大模型主要应用于客户的营销、运营以及产品推介等环节,其中,在产品推荐环节,大模型能够提高信息处理效率,从而更加精准地洞察用户需求偏好进而为客户匹配符合客户需求的金融产品服务。
如蚂蚁集团基于自研金融大模型推出的“蚂小财”,同花顺基于HithinkGPT大模型推出的“问财”,均能提供产品推荐、行情解读、收益分析等服务。
(三)当前中国投顾行业现状
目前中国金融市场上提供投顾业务的主体主要包括两大类:金融机构及第三方销售机构。
其中,金融机构主要包括基金及基金子公司、证券公司、商业银行。投顾主要业务开展模式包括:向客户提供基金投资建议,辅助客户作出投资决策或者代理客户作出投资决策,投资建议服务内容包括投资的品种选择、投资组合以及理财规划建议等。
同时对于智能投顾的监管体系建设也在不断完善,《资管新规》首次将智能投顾纳入法规监管范围,明确规定“运用人工智能技术开展投资顾问业务应当取得投资顾问资质,非金融机构不得借助智能投资顾问超范围经营或者变相开展资产管理业务”,同时要求向金融监管部门对人工智能模型进行充分披露。
应用大模型解决投顾行业痛点
(一)金融机构开展投顾业务具有一定局限性
截至2023年12月底,我国券商投资顾问群体数量为7.7万人,截至2023年8月,A股投资者人数为22141.6万人,简单平均下来,一名投顾需要对应2800余名A股投资者,如果对照基金账户,截至2022年底,中国的场外公募基金个人投资者就已有7.59亿人,一名投顾需要对应的投资者会更多。
投顾的职责及相关法规要求能够对客户的经济状况、投资偏好、家庭状况等等有详细了解。一方面,受制于当前行业的从业人员限制,一名投顾需要服务数百人的客户,对应于这样庞大的客群很难做到对客户的详细了解;另一方面,做好投顾行业不仅需要专业的金融知识储备、丰富的投资经验,还需要细致共情的沟通,这对投顾人才提出了极高的要求。因此长久以来,金融机构重点服务的客户主要为高净值人群,对长尾客群的关注度较低。
(二)AI大模型有利于投顾行业提升服务水平
首先,应用AI大模型的智能投顾能够通过互联网将服务范围扩展到大众人群,实现聚焦普惠客户的数字化、规模化的投资顾问服务;其次,对于客户洞察能够更加精确——应用大数据技术能够实现对客户“千人千面的”的用户画像并提供相应服务内容。同时应用AI大模型的智能投顾,通过高效挖掘海量金融数据背后的市场走势、风险格局,能够有力支撑更加精准和实时的金融决策,帮助提升资产配置及风险管理能力。
表一:我国金融助手领域主要应用大模型
资料来源:蚂蚁技术公众号、同花顺问财公众号、百度智能云智金官网、工信部大模型备案信息、国家互联网信息办公室公布备案信息
03 .
案例分析
(一)蚂小财
1、蚂小财简介
蚂小财是蚂蚁集团推出的AI金融管家,它基于自研的大模型技术,提供智能理财助手服务。蚂小财能够实时解读市场热点,提供个性化服务,并通过图文形式快速解读上市公司财报。截至2024年8月底,月度活跃用户数达到7000万,其中45%来自三线及以下城市,有效触及长尾客户。
2、蚂小财实际使用测评
实际使用中,蚂小财的语义识别准确率较高,但连续作答能力一般,对于无法回答的内容能够做到幻觉规避。在内容准确性方面,总体能够根据提问内容给出对应回答,回答质量较好,能够适配大众投资者的需求,这也符合蚂蚁普惠金融的理念。
表二:蚂小财使用测评结论
(二)同花顺问财
1、同花顺问财简介
同花顺问财利用大数据和自然语言处理技术为用户提供投资建议和选股服务。用户可以通过简单的自然语言输入来查询股票信息、选股、诊股,获取财经资讯,提供的服务内容包括:投资标的选择、个股分析、专业智能体服务。
2、同花顺问财实际使用测评
实际使用中,同花顺问财的语义识别准确率较高,连续作答能力表现较差,两次及以上追问次数连贯性不佳,在幻觉问题上,会存在答非所问的情况。在内容准确性方面,回答内容的专业性较好,且针对财报的分析表现好于蚂小财。
表三:同花顺问财使用测评结论
未来展望及启示
1、幻觉问题需要进一步优化
幻觉现象在大语言模型的应用中表现为模型生成不准确或完全虚构的信息,当前的AI应用在很多情况下仅仅达到95%的准确率,余下的5%所导致的错误信息则可能引发巨大的业务风险,这种情况在专业领域,如金融行业影响巨大。用户在依赖这些信息做出决策时,可能会遭受严重后果,因此未来解决这一问题显得尤为重要。
2、服务内容需要更新迭代
当前智能投顾提供投资建议的主流模式为根据个人投资者提供的风险承受水平、收益目标以及风格偏好等要素,再运用一系列智能算法及投资组合优化等理论模型,为用户提供最终的投资参考,并提供了资产配置再平衡提供建议。目前对于资产配置的模型较为简单且为行业通用型,因此会存在高度同质化、产品单一等问题。未来随着行业的发展,需要对不同客群的需求进行细分,设计不同的业务模型来满足多样化的资产配置需求。
3、产品设计要以用户为本
明确AI金融助手的定位,如面向偏专业投资人士还是偏业余的投资人士,如专业投资者更看重模型能力、指标计算准确性等内容,偏业余的投资人士更看重是否通俗易懂以及给出明确指向。模型能力需要服务于具体落地场景,从测评中可以看出,模型识别能力现实中的效果未必能达到模型描述的结果,这里需要具体深入各项业务场景去确定应当输出的内容。
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓