AI通用大模型的商业新纪元

引言

大模型的商业化问题一直被摆在台桌上反复探讨。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

AI通用大模型的研发和训练成本不容小觑,尽管国内的投入较国外相对较低,但每个模型依然需要数亿资金的支持。随着技术的成熟和资金的注入,商业化成为AI通用大模型厂商分摊成本、实现稳定收入的关键。

国际市场上,以OpenAI为代表的AI通用大模型企业已经在B端和C端有了较为亮眼的商业化进展。在中国,AI通用大模型在B端的商业化模式已日渐清晰,主要以行业定制化解决方案和Maas模式为主。然而C端的商业化,如订阅付费,尚未达成预期的稳定收益并形成明朗的发展路径,商业化与非盈利之间的矛盾仍在发酵。

国内AI通用大模型的四大力量——云厂商、初创公司、高校研究院和传统AI企业——在过去两年中都在积极探索适合自己的商业化路径。从长远来看,在商业化探索基础上,AI通用大模型厂商还应关注解决阻碍商业化进程的技术瓶颈和落地应用不成熟等深层次问题。本文将深入探讨,在中国市场,AI通用大模型的行业参与者应如何走出一条适宜的商业化之路。

图表 1 AI通用大模型主要行业参与者

资料来源:公开信息,智谱整理

商业化,难在哪?

AI通用大模型的盈利方式分为B端和C端两类。在实际应用中,AI通用大模型的行业参与者通常混合使用多种商业模式。

图表 2 AI通用大模型在B端和C端的商业模式

资料来源:公开信息,智谱整理

01

B端

To B商业化——即面向企业,包括MaaS、Iaas、 Paas、Saas、一体式解决方案、行业定制化解决方案、技术买断、广告服务、研究与教育服务等方式,以行业定制化解决方案与模型即服务(MaaS)的变现方式为主流。由于AI通用大模型仍处于发展阶段,其 B端的商业化进程还面临重重挑战:

1

B端商业化处于早期阶段,利润微薄

面对高昂的研发成本,AI通用大模型厂商的收入与支出之间差距依然悬殊。一些AI通用大模型厂商在B端市场开始看到收入,还并未实现真正盈利。一个日活千万的通用大模型每年需要超过100亿元的营收才能覆盖数据中心的开销,而模型的参数规模越大,对算力的需求和成本也就越高,这背后需要源源不断的资金支持。研发成本与资金筹集的压力,成为阻碍厂商顺利发展的绊脚石,也是其利润微薄的主要原因。

此外,为进一步抢占市场份额,国内AI通用大模型厂商开始了价格战。阿里的主打模型Qwen-Long价格降幅高达97%,豆包的千字tokens价格降至0.0008元,腾讯和百度也开放了部分免费模型。这场竞争导致B端业务竞标价格不断走低,甚至出现了亏损接单的现象,利润空间极小。背后原因,一方面是市场大模型供过于求,另一方面市场需求尚未充分释放。尽管我国正全面推进企业数字化,但超六成中小企业数字化进程仍处于初级阶段,市场需求有待进一步培育。总体来看,AI通用大模型的商业化仍处于起步阶段,无论是市场需求的培育、技术迭代、还是盈利模式的探索,依旧任重而道远。

2

MaaS模式陷入“定制重、交付重”怪圈

MaaS具备技术门槛低、模型可共享、适配简易以及灵活调用的特点,但在实际应用中,由于其技术发展不够成熟,仍然需要依赖于行业解决方案来满足企业特定的业务需求和技术挑战。一方面,MaaS本身在技术规范性方面仍存在不足。由于AI技术标准在不同领域和行业尚未统一,各模型或服务可能采用不同的API接口,这些接口在功能、参数和认证方式上的差异,影响了业务快速调用不同模型的便捷性。面对多元化业务需求,用户不得不应对和处理各式各样的API接口,增加了技术复杂性和集成难度。另一方面,大模型的部署需考虑业务场景、参数规格、网络带宽和安全合规等多重因素,MaaS虽然降低了接入AI模型的门槛,但很多企业和机构缺乏必要的技术和经验,在实际应用时,仍需要行业解决方案来应对特定业务场景的需求。

这些挑战促使企业寻求MaaS与行业定制化解决方案相结合的服务模式。但定制化方案往往依赖于项目制交付,服务周期长,对专业人才的需求高。在AI领域人才短缺的背景下,这无疑加大了AI通用大模型厂商在定制化服务和项目交付上的压力,进而限制了在B端市场的利润空间。

02

C端

To C商业化——即面向个人消费者,包括订阅付费、打赏付费、间接变现等方式。在中国,To C的商业化步伐十分缓慢,对于AI通用大模型的厂商而言,主要面临以下挑战:

1

产品同质化程度较高,缺乏差异化应用场景

在C端市场,大模型产品正面临产品同质化的挑战。无论是界面设计、功能应用还是实际效果,产品间的差异性不大,缺乏吸引用户的独特魅力和明确的盈利模式。大多数AI通用大模型产品都以对话机器人为主,性能测评相近,且多以网页和APP为使用平台,使得用户难以短时间内凭直观体验区分产品,便难以迅速对某一产品形成强依赖。同质化趋势的原因有多方面。技术上,当前AI通用大模型多基于Transformer架构,导致底层技术的相似性,产出内容趋同。界面设计上,对话机器人均追求简单直接以降低用户学习成本,却难以让用户留下深刻印象。此外,AI通用大模型行业尚处于早期发展阶段,有限的算力、数据、人才等资源加剧了同质化现象, AI通用大模型厂商探索人工智能往往从较为成熟的文本生成、语音识别等热门领域入手,限制了C端市场的创新和应用拓展。

综合来看,C端产品在应用场景上尚未成熟,市场急需明确的C端需求点,提供创新和差异化服务,以提升用户的付费意愿。

2

C端用户习惯处于养成阶段,付费意愿低,商业化程度缓慢

在C端市场,成功的订阅模式依赖于用户基数、转化率、留存率和定价策略的精准平衡,通过深度融合产品与应用场景,实现用户增长、高付费留存和溢价的正向收益循环。然而,这一模式在国内尚未成熟。国内用户对付费产品的期望值较高,而大模型厂商在缺乏稳定应用场景的情况下急于变现,难以获得C端市场的认可。数据显示,国内C端产品在AI通用大模型的总营收中占比仅为五分之一,与国外如ChatGPT的C端产品营收占比50%相比,我国C端市场的付费习惯仍需时间和技术的沉淀。

何为出路?

存“同”求“异”。四大行业参与者正针对行业发展的共性与各自领域的特性,在商业模式上存“同”求“异”。所谓“存同”,即是坚守那些支撑行业发展的共有商业模式,确保现有产品的市场地位。而“求异”,则是在共性的基础上,寻找差异化的商业模式,发挥各自领域的独特优势,以实现利益的最大化。

图表 3 各行业参与者的主要商业模式

资料来源:公开信息,智谱整理

01

存“同”

B端

1

打破技术壁垒,重推模型高质量发展

模型的高质量是AI通用大模型厂商生存和发展的基石。一方面,在这场“百模大战”中,AI通用大模型厂商还需持续探索解决算力紧张、数据集质量、模型“幻觉”等核心技术问题,以期在芯片、训练、数据、推理等多个维度持续优化模型质量,降低成本。另一方面,统一API接口正推动MaaS模式向标准化迈进。随着技术标准的统一和行业探索的推进,AI通用大模型厂商有望打破系统和模型间的壁垒,实现API的统一调用,从而简化企业集成AI模型服务的过程,搭配厂商如阿里、百度、华为逐步推出的数据训练、模型训练等自助AI工具包,能够进一步降低MaaS模式的技术复杂性和可用性,进而吸引更多企业成为潜在的付费用户,拓展商业化客群,加速下游应用开拓和生态发展。

2

深耕应用痛点,推动可复用的标准化产品

在AI通用大模型的上半场竞争中,厂商们往往受限于高度定制化的商业模式,难以实现业务的快速复制和扩展,限制了整体盈利能力。随着竞争进入下半场,厂商们开始深入客户需求,探索通用且可复制的应用场景,力图通过“标准化”产品,引领AI 2.0时代的可复制增长商业模式。

“标准化”产品通过纵向深耕应用场景,针对实际痛点,打造出贴合客户实际的企业级产品,其具有高度的可复制性和规模化发展潜力,有望将AI通用大模型的能力转化为标准化云服务,开启新的增长模式。例如,百度的文心千帆大模型平台在河南、重庆等地的乡村中,通过大模型辅助解决了医保缴费、户籍办理等最细碎、最耗时的应用场景;零一万物推出的“如意”数字人解决方案,以“万店直播”架构,为直播、办公等智能数字人使用场景带来跨行业的标准化应用。这些能够切实解决客户问题、提升效率的“标准化”产品,正推动AI通用大模型从“可用”到“好用”的华丽转型。

3

探索大小模型协同的MaaS新出路

大小模型的协同作战将是MaaS模式在应用场景落地的关键。目前MaaS模式主要以集成AI通用大模型和AI行业大模型为主,能够凭借其海量数据和强大推理能力,适用于多种任务和复杂场景,但其灵活性有限,深度定制化往往需要复杂的技术支持和大量资源。相比之下,AI小模型展现出更高的灵活性,企业可以根据自身需求调整模型架构、选择训练数据、优化模型参数,通过迁移学习在特定任务上快速微调,实现数小时内完成训练和部署,适配特定业务场景,实现高程度定制化。而大小模型的结合能够使得模型服务更精准地满足多样的应用需求。

大小模型合作可以让大模型成为小模型的基座,将强大的计算能力传递给边缘或终端的小模型,而小模型则负责实际的推理与执行;小模型再将算法效果和执行结果反馈给大模型,以此不断优化大模型的性能,形成动态循环、自我完善的智能系统。

目前,华为盘古大模型采用的“5+N+X”的三层解耦架构,其中的“5”指的就是基础大模型,“N”是通用层面,“X”则是具体应用场景的小模型;沃丰科技采取了“固定部分参数+迭代剩余参数”的方式,在通用大模型基础上,进行小模型的迭代。未来,让小模型更贴近用户实际需求,大模型解决更广泛问题,以小驭大,全面覆盖客户多样需求。

C端

1

重视用户体验,发力多模态交互,寻找成熟付费场景

C端应用的扩张并非一蹴而就,聚焦C端的厂商需要采取更精明的营销策略和用户互动模式,以实现资源的高效获取和用户的持续留存。而多模态交互方式已成为撬动C端用户增长和留存的关键。

多模态通过融合文本、语音、视频等多种技术,兼具用户吸引力(好玩)和产生多次交互(留存)的特点。一方面,多模态具备图片、视频制作等技术交流手段,提供语音命令等交互方式,能够满足用户个性化需求,增加用户使用便捷性。另一方面,多模态能通过不同技术框架补充和验证用户信息,提高操作效率,减少模型“幻觉”问题,以增强用户满意度。如今,字节、智谱AI等企业均已在语音、图片、视频创作等方面为用户提供了丰富的交互选择。

在此基础上,厂商想要打造爆款应用场景,关键在于精准捕捉用户的迫切需求,并深入探索细分领域。如月之暗面的Kimi正通过加速功能迭代和内测“创作音乐视频”的新功能,从细分需求出发,利用多模态技术为用户提供更精准的服务与交互体验。尽管细分市场需求相对小众,但通过差异化竞争、个性化服务和满足特定需求,能够激发客户的支付意愿。AI通用大模型厂商通过细分场景收费,更容易实现C端客户满意度、客户粘度和支付意愿的三重增长。

2

市场教育持续深化

AI通用大模型在C端的渗透正持续深化。以教育行业为例,根据艾瑞数智的统计,2023年中国教育智能硬件市场规模已达512亿元,AI技术在其中扮演的角色占比11%,预计到2027年,这一比例将显著增长至37%。在线教育软件市场也呈现出巨大的增长潜力,2023年市场规模高达2628亿元,AI技术的贡献率达到7%,并有望在未来几年内持续攀升。对于AI通用大模型厂商来说,当前的市场教育期是探索新应用场景、增强技术实力、奠定用户基础的关键时期。这一时期,厂商们需要通过不断的技术创新和市场适应,以满足日益增长的C端市场需求,同时也为未来的商业化和规模化打下坚实基础。

3

推动国际化出海战略

AI通用大模型企业的出海战略,正推动国内厂商在海外C端市场的商业化进程,同时提升中国产品在全球的竞争力。尽管国内用户的付费意愿与国际市场存在差异,且部分产品如Kimi打赏和文心一言在国内的付费模式尚未取得显著成效,但海外市场对SaaS模式的高度接受为国内厂商在C端的商业化落地提供了更轻盈、高效的途径。目前,MiniMax的情感陪伴应用Talkie在美国iOS和安卓平台的月活跃用户数已接近同类明星产品CharacterAI,总营收近83万美元,投资回报率已转为正值。出门问问的海外版AI配音软件DupDub,海外市场收入占年总收入的30%以上。

从市场需求来看,国内AI通用大模型厂商出海机会主要集中在跨境电商、游戏、社交媒体等泛娱乐领域。除了Talkie和DupDub外,云厂商如字节跳动和百度等公司面向海外市场推出了多款基于AI的应用产品,如AI互动剧情产品AnyDoor、AI相机Meira、AI聊天SynClub和AI社交WiseAI等。此外,海外市场对高性能大模型的开放使用,为厂商提供了根据本地需求进行产品创新的机会,加强产品的本地适用性与国际影响力。同时,国外成熟的投融资环境和频繁的收并购活动,为AI通用大模型厂商提供了灵活的市场退出机制。综合来看,国内厂商出海能够加速实现C端商业化路径,优先实现海外创收,累积海外客户忠诚度。

02

求“异”

云厂商

1

特点与现状

云厂商的头部代表企业有百度、阿里、腾讯、华为、和字节,此类厂商凭借其丰富的产品线、雄厚的资本、强大的品牌影响力和深厚的研发实力,成为了行业的领跑者。在通用大模型上,强大的云计算和云平台能力、丰富的大模型产品生态以及广泛的落地应用场景成为了他们引领行业发展的核心竞争力。

云厂商正借助AI通用大模型巩固其在AI生态圈的地位,并将AI通用大模型作为云计算业务转型的基座。云厂商之间的价格战旨在一方面扩大市场份额,另一方面转化其AI通用大模型的客户为其云服务的用户,增强AI通用大模型与其云产品的协同效应。

对比初创厂商,云厂商在数据和内容生态方面拥有明显优势。凭借多年深耕各自领域,他们拥有明确的信息渠道来源,有效降低了数据获取成本。例如,百度的文心一言、腾讯的元宝、字节的豆包等产品,都深度整合了各自平台的内容资源。而初创公司如Kimi、智谱清言等,则更多依赖官方公开信息和第三方媒体渠道。

尽管云厂商都在积极布局AI通用大模型,但他们的基础业务生态和底层发展路径各有千秋,导致他们的模型发展侧重点也各不相同。百度侧重于搜索引擎和文库,阿里聚焦电商和多媒体内容,腾讯关注自然语言处理和综合媒体应用,字节则专注于数据驱动的模型开发,华为则在行业大模型和AI终端设备上发力。差异化的战略将塑造各厂商在大模型技术革新和商业侧重上的不同,共同推动行业生态的多元化发展。

2

其他潜在商业机会

01

B端

持续推进一体机新需求发展

随着AI通用大模型技术的逐步成熟,为了满足企业对高效使用和优化大模型的需求,大模型一体机应运而生。这种一体机提供的不仅是大模型系统,还包括服务器等硬件产品,形成一站式解决方案。它以快速部署、便捷管理和效率提升为特点,同时优化软硬件协同,提高训练和推理效率,减少算力资源消耗。例如,清华大学近期计划投资700万元采购大模型系统教学实践平台,包括大模型系统及28台不同规格的服务器和1台可编程交换机。

对此需求,云厂商具备资金实力雄厚且基础硬件设备健全的独特优势,能够为需要本地化模型部署的大型企事业单位,如银行、保险、信托公司和高校等,提供定制化的一站式服务。目前,市场上已有几款大模型一体机实现商业化,包括百度的千帆大模型一体机、华为的FusionCubeA3000训/推超融合一体机、华为与科大讯飞合作的星火一体机,以及华为与智谱AI合作的智谱GLM昇腾大模型一体机等。

推动广告服务优化发展

云厂商正利用其完善的基础产业生态,成为广告推送和销售的有力推手。在国际领域,云厂商Google利用其先进的语言模型技术,为广告商提供精准的广告投放服务。通过深入分析用户的搜索和浏览行为,Google能够更准确地捕捉用户意图和兴趣,实现广告的精准推送,从而提高点击率和转化率,而广告商则根据广告效果向Google支付费用。标志着Google在广告领域初步实现了语言模型的商业化。

在国内,字节跳动通过其尖端的AI通用大模型数据分析技术,为用户提供个性化内容推荐,并巧妙地在推荐内容中植入广告,实现精准投放。字节跳动的算法能够根据用户的兴趣爱好和浏览历史,推荐相关广告,增强广告效果和用户体验。广告商依据广告的展示和点击数据向字节跳动支付费用。初步实现了AI通用大模型在广告营销领域的商业价值。尽管目前尚无数据显示云服务商已通过广告途径实现大规模收益变现,但云厂商凭借其强大的底层应用生态,有望在广告服务领域率先实现规模性的变现。

02

C端

深入绑定既有应用生态软件

面对C端用户直接收费的挑战,云厂商可以各自凭借其坚实的基础业务生态,持续、深入绑定C端市场应用生态软件的整合,培养用户习惯并探索潜在的盈利场景,以实现间接收入的持续增长。以百度为例,其AI大模型产品文心一言推出了59.9元/月的会员订阅服务,连续包月优惠至49.9元,附加AI绘图功能的会员服务则为99元/月。尽管目前文心一言的会员模式尚未带来显著增益,但百度文库在引入AI功能后,会员付费开通率实现了超过50%的年同比增长。随着云厂商在自有软件中深度整合AI,用户将大规模体验到AI服务升级带来的便利,这有利用增强用户粘性,为推动生态内的付费转化和持续变现奠定基础。

初创厂商

1

特点与现状

在AI通用大模型领域,“六小龙”——零一万物、百川智能、智谱AI、月之暗面、MiniMax和阶跃星辰—以其在自然语言处理(NLP)领域的深厚技术积累脱颖而出。他们通过大规模预训练模型和卓越的产出能力,在各自专注的领域占据行业领先地位。

在AI通用大模型的商业化进程中,“六小龙”正从广泛探索转向聚焦核心,从加法走向减法,深耕特定领域以实现专业化突破。月之暗面暂停出海计划,专注于Kimi的开发,深耕C端应用;MiniMax则利用其“Talkie”在海外市场寻找C端商业化突破。智谱AI和百川智能在B端市场早早布局,智谱AI加速参与投标,实现B端、G端双重发展,百川智能则投身行业大模型,深耕医疗、金融等专业领域。阶跃星辰和零一万物虽入局B端较晚,但零一万物已推出面向零售、餐饮行业的“如意”数字人解决方案,深入贴近用户实际应用场景;阶跃星辰则主要在金融、出版等行业与头部企业合作,技术上紧跟头部云厂商,努力缩小技术差距。初创厂商们正在通过其战略聚焦,塑造更加适配的商业化新篇章。

2

其他潜在商业机会

01

B端

聚焦自身资源,深入特定行业,突出商业价值

随着AI通用大模型技术的逐步成熟,为了满足企业对高效使用和优化大模型的需求,大模型一体机应运而生。种一体机提供的不仅是大模型系统,还包括服务器等硬件产品,形成一站式解决方案。它以快速部署、便捷管理和效率提升为特点,同时优化软硬件协同,提高训练和推理效率,减少算力资源消耗。例如,清华大学近期计划投资700万元采购大模型系统教学实践平台,包括大模型系统及28台不同规格的服务器和1台可编程交换机。

对此需求,云厂商具备资金实力雄厚且基础硬件设备健全的独特优势,能够为需要本地化模型部署的大型企事业单位,如银行、保险、信托公司和高校等,提供定制化的一站式服务。目前,市场上已有几款大模型一体机实现商业化,包括百度的千帆大模型一体机、华为的FusionCubeA3000训/推超融合一体机、华为与科大讯飞合作的星火一体机,以及华为与智谱AI合作的智谱GLM昇腾大模型一体机等。

高校研究院

1

特点与现状

在AI通用大模型的发展浪潮中,以清华大学、北京大学、中科院、浙江大学和IDEA研究院为代表的高校研究院发挥着重要作用。高校研究院以其在专业细分和垂直领域的深入研究而闻名,致力于开发更专业、更细分的大模型,以满足特定领域的需求。例如,北京大学与兔展智能合作推出的法律领域“ChatLaw”和清华大学智谱AI在政务领域的应用。同时,高校研究院具有较强的开放性,乐于开源研究成果,推动技术共享与进步,如清华大学NLP实验室与智源研究院共同开源的CPM-BEE大语言模型;而且在技术辅助方面,通过与企业和研究机构的合作,加速大模型的研发与应用,例如清华大学与字节跳动合作的SALMONN大模型。

此外,高校研究院还肩负着教育和人才培养的使命,通过项目和研究活动培养学生的专业能力。如浙江大学专注于教育的“智海—三乐” 大模型和北京语言大学专注于国际中文教育的“桃李”大模型。

综上所述,高校研究院凭借其专业技术、开放资源和社会责任,在AI通用大模型的发展中扮演着独特且关键的角色。

2

其他潜在商业机会

01

B端

推进校企合作,加速AI产学研生态构建

高校研究院通过深化校企合作,能够加速AI产学研生态构建,为教育和科技成果转化注入经济动力。高校研究院可以依托科研和教育资源,高校的科研和教育资源,与企业共同打造技术创新平台,推动产教融合,联合攻关核心技术,并迅速补齐行业人才短板。例如,百度与浙江大学合作,围绕“计算+”领域,合作构筑中国人工智能产学研创新发展生态;朗新科技集团与上海交通大学合作,推出“双导师”制培养模式,共同攻克技术核心难;科大讯飞与武汉理工大学合作,共同发布了人工智能赋能教育行动“1+1+N”计划。同时,校企合作还能够为高校研究院注入宝贵的经济资源和支持,进一步推动学术研究与产业发展的深度融合,促进双赢的发展局面。

02

C端

承担教育使命,推动研究与教培发展

高校研究院能够利用自身研发优势,设置AI教培课程和实践项目,为学生和社会人士提供高质量的教育课程,以满足C端市场的教育需求。如北京大学对外开设了人工智能研修班,汇聚了国内外顶尖的AI专家、学者和业界领袖,为社会人士与其他在校学生提供了6900元/人的AI课程体系。这种教育服务一方面可以通过合理的收费模式为研究院带来经济收益,另一方面可以促进人才的培养,为AI领域输送具备实战能力和创新思维的专业人才。

传统AI企业

1

特点与现状

传统AI企业如商汤科技、科大讯飞、中国移动、和中国联通等,以其深厚的业务产线为基础,深度融合人工智能,以提升其自身产品矩阵的技术实力与特定领域的技术优势。相较于大厂和新兴的“六小龙”而言,传统AI企业依托市场应用与技术创新,实现了“传统产品+大模型+新应用”的三位一体战略,深耕垂直领域,构建了AI价值商业闭环的先发优势,提升了产业的抗风险能力。如商汤科技在计算机视觉领域积累了雄厚的技术实力,尤其在人脸识别、图像识别和视频分析等方面表现卓越;科大讯飞则在智能语音技术领域占据领先地位,市场份额高达60%;中国移动面向其庞大的C端用户推出了具备文生音乐、文生视频功能的视频彩铃产品,以及支持通话实时转写、字幕翻译的5G+AI新通话等功能,以提升其APP的智能化与实用性;中国联通则推出了“AI+4+X”产品策略,打造了联通看家、联通云盘、数字文化、宽视界等四大核心AI产品。

2

其他潜在商业机会

01

B端

依托专业领域优势,推动知识产权共享

与高校研究院不同,传统AI企业凭借在特定领域的技术优势,能够有效地对知识产权进行商业化运作,能够将AI通用大模型的技术和算法申请专利保护,并授权给其他企业或机构使用,实现知识产权的变现。如科大讯飞在语音识别和自然语言处理领域拥有先进技术和其大模型服务,通过技术授权帮助语音类企业构建智能语音助手、智能客服等应用。

对于有研发实力的企业,他们可能会选择直接购买大模型技术进行深入研究和开发,传统AI企业则可以通过技术转让获得一次性费用。商汤科技便将人脸识别技术授权给安防企业,提升了安防系统在人员识别和监控方面的效率。

综上所述,传统AI企业利用其在特定领域的技术优势,有利于推动知识产权的共享与商业模式的创新。

02

C端

优化AI产品矩阵,拉动C端市场潜力

AI技术的市场落地必须紧密结合用户的实际需求。传统AI企业,凭借其丰富的产品线和庞大的用户群体,能够迅速将需求转化为实际应用。在软件领域,传统AI企业通过AI技术与自身产品线的融合,推动会员付费,间接促进AI在C端的商业化进程。在硬件领域,传统AI企业利用AI技术打造智能化产品,以获得市场先机。如商汤科技除了在软件上发展文生文、文生图等多类模型矩阵外,还推出了“元萝卜机器人”和“众寻AI鼠标”等C端硬件产品。科大讯飞则依托星火大模型,推出了软件教学与AI学习机结合的教育解决方案,实现了AI技术在教育领域的创新突破。随着技术的不断迭代,传统AI企业或将释放更丰富的AI产品能力,进一步加速C端的商业化进程。

总结

在AI通用大模型的商业化征途中,挑战与机遇并存。研发成本虽高,但商业化已成为厂商缓解资金压力、稳定收入的重要途径。B端市场上,行业定制和MaaS模式占据主导,却也遭遇利润稀薄和市场饱和的困境。C端市场则因产品差异化不足和用户付费意愿不高而进展缓慢。

为突破现状,行业参与者需在通用模式中寻找个性化路径。云厂商可借助生态优势,推动一体机和广告服务的增长;初创企业“六小龙”可通过深耕特定领域,实现专业化发展;高校研究院可通过开源合作,促进技术共享和人才培养;传统AI企业则可利用其领域专长,推动知识产权变现和C端市场的拓展。

总之,AI通用大模型的商业化之路依旧任重而道远,需要行业各参与者在技术持续创新、市场需求挖掘、与盈利模式探索等方面不懈努力,以推动行业的持续发展。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT猫仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值