入门AI大模型必备的行业深度解析(一)AI大模型定义、三大特征、分类、行业应用价值、商业模式...

AI大模型作为全球科技竞争的核心,已成为推动未来产业发展和经济新动力的重要技术。其应用正逐步从云端扩展至终端设备,并从通用模型转向行业定制化解决方案,商业潜力不断增大。随着国内外企业竞争加剧,AI大模型的性能和应用场景持续拓展,推动技术快速发展和产业深层次变革。

在这里插入图片描述

1、AI大模型定义

AI大模型是指在机器学习和深度学习领域中,采用大规模参数(至少在一亿个以上)的神经网络模型,AI大模型在训练过程中需要使用大量的算力和高质量的数据资源。

2、AI大模型主要特征

AI大模型具有泛化性(知识迁移到新领域)、通用性(不局限于特定领域)以及涌现性(产生预料之外的新能力)特征。以ChatGPT为代表的AI大模型因其具有巨量参数和深度网络结构,能学习并理解更多的特征和模式,从而在处理复杂任务时展现强大的自然语言理解、意图识别、推理、内容生成等能力,同时具有通用问题求解能力,被视作通往通用人工智能的重要路径。

3、AI大模型分类

按模态划分,大模型可分为自然语言处理(NLP)大模型,视觉(CV)大模型、多模态大模型等。

按照部署方式划分,AI大模型主要分为云侧大模型和端侧大模型两类。

  • 云侧大模型由于部署在云端,其拥有更大的参数规模、更多的算力资源以及海量的数据存储需求等特点;
  • 端侧大模型通常部署在手机、PC等终端上,具有参数规模小、本地化运行、隐私保护强等特点。

具体而言,云侧大模型分为通用大模型和行业大模型;端侧大模型主要有手机大模型、PC大模型。 从云侧大模型来看,通用大模型具有适用性广泛的特征,其训练数据涵盖多个领域,能够处理各种类型的任务,普适性较强。

行业大模型具有专业性强的特点,针对特定行业(如金融、医疗、政务等)的需求进行模型训练,因而对特定领域具有更深的业务理解和场景应用能力。从端侧大模型来看,手机和PC大模型由于直接部署在设备终端,让用户体验到更加个性化和便捷的智能体验。

当前AI大模型的应用路线日渐清晰,大致途径为“基础大模型→行业大模型→终端应用”。

4、AI大模型行业应用价值

AI大模型能够提升要素效率及数据要素地位。

目前数据已成为新生产要素。 数字经济是继农业经济、工业经济之后的现阶段主要经济形态,数据要素已成为数字经济时代下的新型生产要素。2019年十九届四中全会,数字要素首次被增列为生产要素,数据要素地位得到确立。我国成为首个将数据列为生产要素的国家。

数据从企业内部到外部的流通过程中可以创造三次价值:
(1)数据支撑业务贯通;
(2)数据推动企业数智决策;
(3)数据资源流通交易赋能社会创造额外价值。

AI大模型技术进步提升生产要素使用效率。 基于生产函数模型,AI大模型的技术进步对生产函数的影响如图所示,且当前的大模型技术进步对经济增长的影响仍成发散态势,即AB<BC<CD。AI大模型的应用从改变数据要素的生成方式和企业经营决策驱动方式两大维度提升了数据要素在生产要素组合中的占比地位。

5、大模型发展以Transformer为技术基座

当前主流大模型普遍是基于Transformer模型进行设计的。Transformer模型在Google团队2017年论文《Attention Is All You Need》中被首次提出,Transformer的核心优势在于具有独特的自注意力(Self-attention)机制,能够直接建模任意距离的词元之间的交互关系,解决了循环神经网络(RNN)、卷积神经网络(CNN)等传统神经网络存在的长序列依赖问题。

相较于RNN,Transformer具有两个显著的优势。1)处理长序列数据:RNN受限于循环结构,难以处理长序列数据。Self-attention机制能够同时处理序列中的所有位置,捕捉全局依赖关系,从而更准确地理解、表示文本含义。2)实现并行化计算:RNN作为时序结构,需要依次处理序列中的每个元素,计算速度受到较大限制,而Transformer则可以一次性处理整个序列,大大提高了计算效率。

Transformer由两类组件构成:Encoder(编码器)和Decoder(解码器)。通常,Encoder结构擅长从文本中提取信息以执行分类、回归等任务,而Decoder结构则专用于生成文本。

实际上,两类组件可以独立使用,当前主流大模型中,诞生了以BERT为代表的Encoder-only架构、以T5为代表的Encoder-decoder架构、以GPT为代表的Decoder-only架构的大规模预训练语言模型。

6、大模型商业模式

大模型收费模式可以总结为API、订阅、广告、定制化四种。

首先,大模型最常见的商业模式基本遵循软件行业的SaaS(Software as a Service),通用大模型通常会采取API模式,根据tokens/调用次数/产出内容量等计价,大模型形成AI产品后,可以采用订阅制,按月/季/年向用户收取使用费。

同时,AI产品若具备一定程度的流量价值,能够吸引商家投放广告,从而收取广告费。此外,服务内容可以不限于大模型本身,针对付费能力强的企业客户,部分厂商会提供软硬件一体的定制化解决方案,称之为MaaS(Model as a Service)。

从AI产品商业化程度来看,B端变现模式更加清晰,C端大多数产品仍然以免费为主。

根据量子位智库,面向B端的AI产品从通用场景到垂直赛道分布较均匀,收入模式以会员订阅和按需付费为主,商业模式较为清晰,虽然(纯B端)市场占比只有31%,但80%以上的产品均能实现营收。

C端AI产品以智能助手以及图像生成类的生产力工具为主,虽然用户量大(纯C端占比50%以上),但近50%的产品当前仍未有明确的收入模式,以免费为主。

纵观海内外的大模型厂商,OpenAI确立了最为经典的大模型商业模式,主要包括ChatGPT订阅、API调用、战略合作三种营收方式。

(1)ChatGPT订阅:OpenAI向C端提供生产力解放工具ChatGPT,并以付费订阅模式变现,针对ChatGPT Plus会员收取每月20美元的订阅费。

(2)API调用:而对于模型使用灵活性要求更高的用户,提供API服务,基于模型的调用量(tokens)或者产出内容量(如图片张数、时长)收费。

(3)战略合作:此外,公司与微软建立了密切合作关系,ToC,OpenAI模型能力嵌入微软的生成式AI工具,如GitHub、Office、Bing等;ToB,微软Azure是OpenAI的独家云服务提供商,Azure全球版企业客户可以在平台上直接调用OpenAI模型。OpenAI绝大多数收入来自前两项,ChatGPT订阅和API调用。


最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值