定积分的应用—所围图形的面积、绕轴旋转所围成立体的体积、旋转曲面的面积、弧长

本篇本章,将从几个简单的例子带大家分析总结定积分的应用中常用的方法和思想,一起学习进入定积分的世界😜😜

一、求所围图形的面积
1.求由抛物线 y = x 2 与 y = 2 − x 2 所围图形的面积 y=x^2与y=2-x^2所围图形的面积 y=x2y=2x2所围图形的面积

思路:
计算交点
利用微元法计算出局部量的近似值
最后无限累加求出整体量的精确值

分析图解如下:
在这里插入图片描述

过程如下:
在这里插入图片描述
2.求由摆线 x = t − s i n t ; y = 1 − c o s t x=t-sint;y=1-cost x=tsint;y=1cost的一拱与x轴所围成图形的面积。
在这里插入图片描述
(很多情况下,题目中的a都为1)
这个题如同上道题目一样,我们采用微元法进行分析。
图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述
3.求心形线 r = 1 + c o s θ r=1+cosθ r=1+cosθ所围图形的面积。
心形线:
在这里插入图片描述
图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述
二、绕轴旋转所围成立体的体积
求平面曲线y=sinx,0≤x≤π绕x轴旋转所围成立体的体积

这个同分析平面图形面积一样,依然可以采用微元法进行分析(尤其是绕x轴旋转)
我们取一局部旋转体,计算其体积。
这时候局部旋转体的体积可以看作是底面半径为y,高度为dx的小圆柱体
最后无限累加求出整体的值

图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述
三、计算弧长
求摆线 x = t − s i n t ; y = 1 − c o s t x=t-sint;y=1-cost x=tsint;y=1cost 的一拱的弧长。
首先我们简要利用图形推算一下弧长的计算公式。
在这里插入图片描述
若是参数形式,也同理:
在这里插入图片描述
那么摆线的弧长:
在这里插入图片描述
四、旋转曲面的面积
求平面曲线y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积。

利用微元法
计算局部一个小圆台的表面积(画图更加清晰)

图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述

### 关于定积分应用的习题集推荐 针对高等数学中定积分应用,可以参考以下两份经典资料: #### 1. 华东师范大学版《数学分析》课后习题 华东师范大学编写的《数学分析》教材及其配套课后习题涵盖了丰富的定积分理论与实际应用案例[^1]。这些题目不仅涉及基本计算技巧,还深入探讨了几何意义、物理模型以及经济领域中的具体应用场景。 例如,在几何方面有求平面图形面积旋转体积等问题;物理学上则包括变力做功、液体压力等复杂情境下的建模练习。通过解决这些问题,学生能够更加深刻理解定积分概念并提升解决问题的能力。 #### 2. 吉米多维奇《数学分析习题集》 作为国际知名的微积分训练手册,《吉米多维奇数学分析习题集》提供了大量高质量且难度适中的定积分应用型试题[^2]。特别是其第三册专门讨论了多元函数积分相关内容之前章节也包含了详尽的一维情形处理办法——从简单到复杂的逐步引导过程使得初学者易于接受同时也挑战高级使用者思考更多可能性。 书中每道例题都配有详细解答步骤说明,并附带额外提示用于启发独立探索精神。此外,“学习指引”版本更是增加了许多实用性的补充材料如历史渊源介绍或者跨学科关联解释等内容进一步增强了书籍实用性。 虽然目前无法直接提供PDF下载链接,但建议可以通过正规渠道购买正版图书或访问各大高校图书馆资源库获取电子副本文件形式阅读体验更好同时支持作者创作权益保护工作持续开展下去。 ```python # Python 示例代码展示如何数值近似计算定积分 (仅作演示用途) from scipy.integrate import quad def integrand(x): return x**2 result, error = quad(integrand, 0, 1) print(f"The result of the integral is {result} with an estimated error of {error}.") ``` 上述Python脚本展示了使用SciPy库来实现对特定区间内的连续函数进行精确度较高的数值积分运算操作流程图解教程适合编程爱好者尝试实践加深印象巩固所学知识点效果显著优于单纯记忆公式法则等方式方法论层面考虑更为全面周到兼顾远发展需求特点鲜明值得推广普及开来让更多人受益匪浅收获满满! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值