定积分的应用—所围图形的面积、绕轴旋转所围成立体的体积、旋转曲面的面积、弧长

本篇本章,将从几个简单的例子带大家分析总结定积分的应用中常用的方法和思想,一起学习进入定积分的世界😜😜

一、求所围图形的面积
1.求由抛物线 y = x 2 与 y = 2 − x 2 所围图形的面积 y=x^2与y=2-x^2所围图形的面积 y=x2y=2x2所围图形的面积

思路:
计算交点
利用微元法计算出局部量的近似值
最后无限累加求出整体量的精确值

分析图解如下:
在这里插入图片描述

过程如下:
在这里插入图片描述
2.求由摆线 x = t − s i n t ; y = 1 − c o s t x=t-sint;y=1-cost x=tsint;y=1cost的一拱与x轴所围成图形的面积。
在这里插入图片描述
(很多情况下,题目中的a都为1)
这个题如同上道题目一样,我们采用微元法进行分析。
图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述
3.求心形线 r = 1 + c o s θ r=1+cosθ r=1+cosθ所围图形的面积。
心形线:
在这里插入图片描述
图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述
二、绕轴旋转所围成立体的体积
求平面曲线y=sinx,0≤x≤π绕x轴旋转所围成立体的体积

这个同分析平面图形面积一样,依然可以采用微元法进行分析(尤其是绕x轴旋转)
我们取一局部旋转体,计算其体积。
这时候局部旋转体的体积可以看作是底面半径为y,高度为dx的小圆柱体
最后无限累加求出整体的值

图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述
三、计算弧长
求摆线 x = t − s i n t ; y = 1 − c o s t x=t-sint;y=1-cost x=tsint;y=1cost 的一拱的弧长。
首先我们简要利用图形推算一下弧长的计算公式。
在这里插入图片描述
若是参数形式,也同理:
在这里插入图片描述
那么摆线的弧长:
在这里插入图片描述
四、旋转曲面的面积
求平面曲线y=sinx,0≤x≤π绕x轴旋转所得旋转曲面的面积。

利用微元法
计算局部一个小圆台的表面积(画图更加清晰)

图解分析:
在这里插入图片描述
过程如下:
在这里插入图片描述

首先,给定星形线方程为 $x = a\cos 3t,\ y = a\sin 3t$,其中 $a$ 为常数。 1. 求面积: 由于星形线方程是极坐标方程,因此可以使用极坐标下的面积公式计算: $$A = \frac{1}{2} \int_{0}^{2\pi} (r(\theta))^2 d\theta$$ 其中,$r(\theta)$ 是星形线方程对应的极径,即 $r(\theta) = a$。 带入公式,得到: $$A = \frac{1}{2} \int_{0}^{2\pi} a^2 d\theta = \frac{1}{2} \cdot a^2 \cdot 2\pi = \pi a^2$$ 因此,星形线所围成面积为 $\pi a^2$。 2. 求: 同样地,可以使用极坐标下的公式计算: $$L = \int_{0}^{2\pi} \sqrt{(r(\theta))^2 + (r'(\theta))^2} d\theta$$ 其中,$r'(\theta)$ 是星形线方程对应的极径的导数,即 $r'(\theta) = -3a\sin 3t$。 带入公式,得到: $$L = \int_{0}^{2\pi} \sqrt{a^2 + 9a^2\sin^2 3t} dt$$ 这个积分比较复杂,需要使用椭圆积分求解。最终结果为: $$L = \int_{0}^{2\pi} \sqrt{a^2 + 9a^2\sin^2 3t} dt = \frac{4a}{3} E\left(\frac{1}{2}\right)$$ 其中,$E(\frac{1}{2})$ 是第二类椭圆积分,其近似值为 $1.350643$。因此,星形线的为 $\frac{4a}{3} E\left(\frac{1}{2}\right)$。 3. 求旋转体积: 将星形线 $x$ 旋转一周,得到的旋转体是一个旋转半径为 $y$ 的圆柱体。因此,可以使用圆柱体的体积公式计算旋转体的体积: $$V = \pi \int_{-a}^{a} y^2 dx$$ 将 $x$ $y$ 用 $t$ 表示,得到: $$V = \pi \int_{0}^{2\pi} (a\sin 3t)^2 (3a\cos 3t) dt = \frac{4\pi}{9}a^3$$ 因此,星形线 $x$ 旋转而成的旋转体积为 $\frac{4\pi}{9}a^3$。 4. 求侧面积旋转体的侧面积可以通过将旋转体展开成一个矩形再减去两个圆的面积来计算。具体来说,可以先计算旋转体的高度 $h$ 底边 $l$,然后用 $2lh + 2\pi a^2$ 计算侧面积旋转体的高度等于星形线的,即: $$h = \frac{4a}{3} E\left(\frac{1}{2}\right)$$ 旋转体的底边等于星形线的周,即: $$l = \int_{0}^{2\pi} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$ 其中,$x'(t)$ $y'(t)$ 分别是星形线方程对应的横坐标纵坐标的导数。带入公式,得到: $$l = \int_{0}^{2\pi} \sqrt{(3a\cos 3t)^2 + (3a\sin 3t)^2} dt = 6a\pi$$ 因此,旋转体的侧面积为: $$S = 2lh + 2\pi a^2 = \frac{8\pi}{3}a^2 E\left(\frac{1}{2}\right) + 2\pi a^2$$ 综上所述,星形线所围成面积为 $\pi a^2$,为 $\frac{4a}{3} E\left(\frac{1}{2}\right)$, $x$ 旋转而生成的旋转体积为 $\frac{4\pi}{9}a^3$,侧面积为 $\frac{8\pi}{3}a^2 E\left(\frac{1}{2}\right) + 2\pi a^2$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

釉色清风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值