💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
冲击管被用于研究爆轰波,或者短暂地获得高压和高温,以便研究燃烧或其他反应。Glass 等人(Glass I.I. 1953)描述了一个简化的一维模型,忽略了气体粘度,适用于完美气体(即具有恒定热容的理想气体)的情况。在下文中,该模型被推广至非理想气体。
最初,冲击管由两个部分组成:高压(或驱动)部分和低压(或被动)部分。一个隔膜将这两个部分分隔开。在时间零时,隔膜破裂,气体从驱动侧流向被动侧。图1显示了波的轨迹和几毫秒后的一个样本压力曲线。
这些工具可用于进行高效、高精度的热力学计算。可用的种类包括 H2、paraH2、orthoH2、N2、O2、Ar、H2O 和 CO2。
左侧的稀疏波以局部声速向驱动气体传播。图中称之为“膨胀扇”。与此同时,一道冲击波向右侧的被动气体传播。由于我们忽略了粘度和因此摩擦,所以在稀疏波的右端和冲击波之间,压力和流速是恒定的。我们忽略了驱动气体和被动气体之间的任何混合,因此这个接触面会随着气体流速移动。在图1中,有四个区域:
1) 未受干扰的被动气体
2) 冲击波后的被动气体
3) 完全膨胀的驱动气体
4) 未受干扰的驱动气体
如果管道右侧有一个刚性的端壁,冲击波将撞击这面墙并反射,定义另一个区域:
5) 反射波后(右侧)的气体。
膨胀波将撞击驱动部分的末端,形成一个反射波向右传播。随着时间的增加,一系列相互作用的波模式会出现,变得越来越复杂。这些都没有包含在模型中。
以下是针对H₂、paraH₂、orthoH₂、N₂、O₂、Ar、H₂O和CO₂的高效、高精度热力学计算方法的综合分析,结合文献资料的系统梳理:
一、氢及其同核异构体(H₂、paraH₂、orthoH₂)
1. 量子统计效应与热力学模型
-
自旋态差异:
paraH₂(核自旋反平行)和orthoH₂(核自旋平行)因自旋态不同导致转动量子数分布差异。其热力学性质(如熵、热容)需分别计算配分函数。高温下二者比例为3:1,低温时paraH₂占主导。 -
配分函数计算:
基于绝热势和束缚能级的高阶自洽方法计算配分函数,包含准束缚能级对低温热力学量的影响。例如,转动配分函数公式:其中Θ为转动特征温度。
2. 临界点附近的高精度计算
- BWR方程应用:
Benedict-Webb-Rubin (BWR) 状态方程适用于临界温度以上或低压未饱和H₂的焓、熵计算,但在过饱和区误差显著增大,需结合实验数据修正。 - ab initio方法:
通过G4等热力学组合方法优化分子构型并计算热力学量,结合振动分析和高精度单点计算,误差可控制在±1 kJ/mol以内。
3. 催化转化与实验验证
- ortho-para转化机制:
与顺磁性分子(如O₂)碰撞时,磁偶极-交换相互作用导致自旋态转化,需在动力学模型中引入速率系数。 - 实验数据对比:
计算得到的旋转热容与实验值吻合,验证了统计模型的可靠性。
二、氮气(N₂)、氧气(O₂)、氩气(Ar)
1. 热力学数据来源与模型
- NIST数据库:
N₂的临界参数(Tc=126.2 K,Pc=33.9 bar)、热容、熵等数据基于实验测量和动态数据分析,覆盖温度范围50–6000 K。 - 吸附模型:
在PSA(变压吸附)工艺中,采用三组分Langmuir-Freundlich等温线描述N₂、O₂、Ar在碳分子筛上的竞争吸附行为。 - 双温度模型:
用于高超声速流动计算,通过Blottner系数描述平动-转动能量弛豫过程,材料数据库包含N₂、O₂、Ar的振动温度参数。
2. 状态方程选择
- 理想气体模型:
适用于低压、高温条件下的快速计算,误差在1%以内。 - PR/SRK方程:
修正的立方型状态方程(如Peng-Robinson)适用于中压范围,结合Huron-Vidal混合规则可处理极性气体混合物。
三、水(H₂O)的相态处理
1. 气态与液态模型
- G4组合方法:
自动完成构型优化、振动分析和单点计算,直接输出298.15 K下的内能(U)、焓(H)、吉布斯自由能(G)等。 - SAFT状态方程:
考虑氢键作用,适用于液态水的密度和相平衡计算,精度优于传统立方型方程。
2. 相变热力学
- 汽化热计算:
通过Hess定律整合反应路径,例如液态水汽化焓变ΔHvap=+44 kJ/molΔHvap=+44 kJ/mol(需反转放热反应方向)。 - 超临界区域:
使用Twuα函数修正PR方程,结合体积平移模型提高密度预测精度。
四、二氧化碳(CO₂)的高压/高温特性
1. 极端条件相行为
- 高压聚合相:
在40–120 GPa下,CO₂分子聚合形成共价网络(如CO₂-V相),需采用分子动力学模拟或ab initio计算其热力学稳定性。 - 状态方程优化:
VHL方程基于Lennard-Jones势函数,在爆轰环境(20–60 GPa)下计算CO₂的pVT关系,平均偏差<1%。
2. 超临界与工业应用
- 热导率模型:
基于对应状态理论和Helmholtz能量方程,预测超临界CO₂的热导率,实验验证温度范围300–700 K。 - 电化学还原:
高压操作(>10 bar)提高CO₂局部浓度,结合MEA装置优化电流密度和产物选择性。
五、计算工具与实现
1. 软件与接口
- MATLAB/CoolProp集成:
提供H₂、paraH₂、orthoH₂、N₂、O₂、Ar、H₂O、CO₂的热力学参数接口,支持状态方程插值和自定义模型扩展。 - 量子化学工具链:
Gaussian+Shermo组合实现热力学量批量计算,EasyShermo脚本自动化处理输出文件。
2. 模型选择建议
物质 | 适用条件 | 推荐模型 |
---|---|---|
H₂ | 临界点附近 | BWR方程 + 实验修正 |
para/ortho-H₂ | 低温(<100 K) | 统计热力学配分函数 |
N₂/O₂/Ar | 工业吸附过程 | Langmuir-Freundlich等温线 |
H₂O | 液态氢键效应 | SAFT方程 |
CO₂ | 超临界/高压 | VHL状态方程 |
六、总结与展望
高效热力学计算需结合多尺度方法:
- 微观:ab initio计算提供高精度分子参数;
- 介观:统计热力学处理量子效应(如自旋态、同位素);
- 宏观:状态方程与实验数据拟合保证工程适用性。
未来方向包括机器学习加速参数优化、跨尺度模型耦合(如MD与CFD),以及极端条件下新材料热力学数据库的构建。
详细文章见第4部分。
📚2 运行结果
部分代码:
% Tank parameters:
tank.wallmass = 500; % kg
tank.cp_wall = 100; % J/kg/K
tank.V = 5; % m3
tank.Area = 2; % m2
tank.heatcoeff = 0; % W/m2/K (Adiabatic tank)
Ta = 273.15+15; % ambient temoerature
T0 = Ta;
p0 = 20e5;
T_up = Ta;
p_up = 350e5;
w = 0.2; % Filling rate (kg/s)
p_final = 300e5;
[t,T,N,p] = fill_gas_tank(th,tank,T0,p0,T_up,p_up,Ta,w,p_final);
figure;
subplot(311);
plot(t,T-274.15)
ylabel \circC
title('Filling of H_2 tank with constant rate')
subplot(312);
plot(t,p*1e-5);
ylabel bar
subplot(313);
plot(t,N*th.Mw);
ylabel kg
xlabel seconds
fprintf('Final temperature %6.1f\n',T(end)-273.15)
fprintf('Temperature increase %6.1f\n',T(end)-T(1))
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。