【用于高效、高精度热力学计算的计算包括( H2、paraH2、orthoH2、N2、O2、Ar、H2O 和 CO2)(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、氢及其同核异构体(H₂、paraH₂、orthoH₂)

1. 量子统计效应与热力学模型

2. 临界点附近的高精度计算

3. 催化转化与实验验证

二、氮气(N₂)、氧气(O₂)、氩气(Ar)

1. 热力学数据来源与模型

2. 状态方程选择

三、水(H₂O)的相态处理

1. 气态与液态模型

2. 相变热力学

四、二氧化碳(CO₂)的高压/高温特性

1. 极端条件相行为

2. 超临界与工业应用

五、计算工具与实现

1. 软件与接口

2. 模型选择建议

六、总结与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、文档下载


💥1 概述

冲击管被用于研究爆轰波,或者短暂地获得高压和高温,以便研究燃烧或其他反应。Glass 等人(Glass I.I. 1953)描述了一个简化的一维模型,忽略了气体粘度,适用于完美气体(即具有恒定热容的理想气体)的情况。在下文中,该模型被推广至非理想气体。

最初,冲击管由两个部分组成:高压(或驱动)部分和低压(或被动)部分。一个隔膜将这两个部分分隔开。在时间零时,隔膜破裂,气体从驱动侧流向被动侧。图1显示了波的轨迹和几毫秒后的一个样本压力曲线。

这些工具可用于进行高效、高精度的热力学计算。可用的种类包括 H2、paraH2、orthoH2、N2、O2、Ar、H2O 和 CO2。

左侧的稀疏波以局部声速向驱动气体传播。图中称之为“膨胀扇”。与此同时,一道冲击波向右侧的被动气体传播。由于我们忽略了粘度和因此摩擦,所以在稀疏波的右端和冲击波之间,压力和流速是恒定的。我们忽略了驱动气体和被动气体之间的任何混合,因此这个接触面会随着气体流速移动。在图1中,有四个区域:
1) 未受干扰的被动气体
2) 冲击波后的被动气体
3) 完全膨胀的驱动气体
4) 未受干扰的驱动气体
如果管道右侧有一个刚性的端壁,冲击波将撞击这面墙并反射,定义另一个区域:
5) 反射波后(右侧)的气体。
膨胀波将撞击驱动部分的末端,形成一个反射波向右传播。随着时间的增加,一系列相互作用的波模式会出现,变得越来越复杂。这些都没有包含在模型中。

以下是针对H₂、paraH₂、orthoH₂、N₂、O₂、Ar、H₂O和CO₂的高效、高精度热力学计算方法的综合分析,结合文献资料的系统梳理:


一、氢及其同核异构体(H₂、paraH₂、orthoH₂)

1. 量子统计效应与热力学模型
  • 自旋态差异
    paraH₂(核自旋反平行)和orthoH₂(核自旋平行)因自旋态不同导致转动量子数分布差异。其热力学性质(如熵、热容)需分别计算配分函数。高温下二者比例为3:1,低温时paraH₂占主导。

  • 配分函数计算
    基于绝热势和束缚能级的高阶自洽方法计算配分函数,包含准束缚能级对低温热力学量的影响。例如,转动配分函数公式:

    其中Θ​为转动特征温度。

2. 临界点附近的高精度计算
  • BWR方程应用
    Benedict-Webb-Rubin (BWR) 状态方程适用于临界温度以上或低压未饱和H₂的焓、熵计算,但在过饱和区误差显著增大,需结合实验数据修正。
  • ab initio方法
    通过G4等热力学组合方法优化分子构型并计算热力学量,结合振动分析和高精度单点计算,误差可控制在±1 kJ/mol以内。
3. 催化转化与实验验证
  • ortho-para转化机制
    与顺磁性分子(如O₂)碰撞时,磁偶极-交换相互作用导致自旋态转化,需在动力学模型中引入速率系数。
  • 实验数据对比
    计算得到的旋转热容与实验值吻合,验证了统计模型的可靠性。

二、氮气(N₂)、氧气(O₂)、氩气(Ar)

1. 热力学数据来源与模型
  • NIST数据库
    N₂的临界参数(Tc=126.2 K,Pc=33.9 bar)、热容、熵等数据基于实验测量和动态数据分析,覆盖温度范围50–6000 K。
  • 吸附模型
    在PSA(变压吸附)工艺中,采用三组分Langmuir-Freundlich等温线描述N₂、O₂、Ar在碳分子筛上的竞争吸附行为。
  • 双温度模型
    用于高超声速流动计算,通过Blottner系数描述平动-转动能量弛豫过程,材料数据库包含N₂、O₂、Ar的振动温度参数。
2. 状态方程选择
  • 理想气体模型
    适用于低压、高温条件下的快速计算,误差在1%以内。
  • PR/SRK方程
    修正的立方型状态方程(如Peng-Robinson)适用于中压范围,结合Huron-Vidal混合规则可处理极性气体混合物。

三、水(H₂O)的相态处理

1. 气态与液态模型
  • G4组合方法
    自动完成构型优化、振动分析和单点计算,直接输出298.15 K下的内能(U)、焓(H)、吉布斯自由能(G)等。
  • SAFT状态方程
    考虑氢键作用,适用于液态水的密度和相平衡计算,精度优于传统立方型方程。
2. 相变热力学
  • 汽化热计算
    通过Hess定律整合反应路径,例如液态水汽化焓变ΔHvap=+44 kJ/molΔHvap​=+44 kJ/mol(需反转放热反应方向)。
  • 超临界区域
    使用Twuα函数修正PR方程,结合体积平移模型提高密度预测精度。

四、二氧化碳(CO₂)的高压/高温特性

1. 极端条件相行为
  • 高压聚合相
    在40–120 GPa下,CO₂分子聚合形成共价网络(如CO₂-V相),需采用分子动力学模拟或ab initio计算其热力学稳定性。
  • 状态方程优化
    VHL方程基于Lennard-Jones势函数,在爆轰环境(20–60 GPa)下计算CO₂的pVT关系,平均偏差<1%。
2. 超临界与工业应用
  • 热导率模型
    基于对应状态理论和Helmholtz能量方程,预测超临界CO₂的热导率,实验验证温度范围300–700 K。
  • 电化学还原
    高压操作(>10 bar)提高CO₂局部浓度,结合MEA装置优化电流密度和产物选择性。

五、计算工具与实现

1. 软件与接口
  • MATLAB/CoolProp集成
    提供H₂、paraH₂、orthoH₂、N₂、O₂、Ar、H₂O、CO₂的热力学参数接口,支持状态方程插值和自定义模型扩展。
  • 量子化学工具链
    Gaussian+Shermo组合实现热力学量批量计算,EasyShermo脚本自动化处理输出文件。
2. 模型选择建议
物质适用条件推荐模型
H₂临界点附近BWR方程 + 实验修正
para/ortho-H₂低温(<100 K)统计热力学配分函数
N₂/O₂/Ar工业吸附过程Langmuir-Freundlich等温线
H₂O液态氢键效应SAFT方程
CO₂超临界/高压VHL状态方程

六、总结与展望

高效热力学计算需结合多尺度方法

  • 微观:ab initio计算提供高精度分子参数;
  • 介观:统计热力学处理量子效应(如自旋态、同位素);
  • 宏观:状态方程与实验数据拟合保证工程适用性。
    未来方向包括机器学习加速参数优化、跨尺度模型耦合(如MD与CFD),以及极端条件下新材料热力学数据库的构建。

详细文章见第4部分。

📚2 运行结果

部分代码:

% Tank parameters:
  tank.wallmass = 500;    % kg
  tank.cp_wall = 100;     % J/kg/K 
  tank.V = 5;             % m3
  tank.Area = 2;          % m2
  tank.heatcoeff  = 0;    % W/m2/K  (Adiabatic tank)
  
  Ta = 273.15+15;   % ambient temoerature
  T0 = Ta;
  p0 = 20e5;
  T_up = Ta;
  p_up = 350e5;
  w = 0.2;  % Filling rate (kg/s)
  p_final = 300e5;
  [t,T,N,p] = fill_gas_tank(th,tank,T0,p0,T_up,p_up,Ta,w,p_final);

  figure;
  subplot(311);
  plot(t,T-274.15)
  ylabel \circC
  title('Filling of H_2 tank with constant rate')
  subplot(312);
  plot(t,p*1e-5);
  ylabel bar
  subplot(313);
  plot(t,N*th.Mw);
  ylabel kg  
  xlabel seconds  
  
  fprintf('Final temperature %6.1f\n',T(end)-273.15)
  fprintf('Temperature increase %6.1f\n',T(end)-T(1))

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、文档下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值