为了降低二氧化碳的排放量,改善人类的生活环境,我国实施了“碳达峰.碳中和”战略。氢能燃料电池、风电、光电、锂电等可再生清洁能源比重将逐渐增加。材料是这些新能源材料技术实现的关键,在新材料合成实验过程中,涉及到的实验参数很多,对材料的性能又具有不同程度的影响作用。另外,这些实验参数对材料性能的影响规律又存在相互影响的关系,在理论上很难找到合适的函数关系准确描述。例如在材料的注塑成型实验过程中,注塑件的质量在很大程度上取决于注塑成型工艺参数优化,其中浇注结构参数(浇口数量与位置)、冷却系统结构参数(冷却管道的布局、位置、长度)是重要的模具结构参数,对注塑质量的影响大。
实验参数的确定是一个设计、修改、再完善的反复迭代、不断优化的建模过程。人们最开始采用随机取值法,这种方法的随机性很大,存在周期长、效率低、人财物耗费大等问题。后来,人们采用了正交实验法,根据正交性从全面试验中挑选出部分有代表性的点进行试验,找出最优因素组合。这在一定程度上为实验参数的优化提供了理论基础和指导。然而可解释性模型理论、大量实验数据快速获取技术的匮乏成为材料科学发展过程中的瓶颈,亟需探索和开发一种高效方法提高新材料的研发效率。
为了得到各实验参数因素与材料性能指标之间的关系,找出各因素对材料性能指标影响的规律和趋势,寻求各因素水平的最佳组合,人们采用极差法对数据进行分析。极差是一组数据中最大值与最小值之差,极差值越大,表示该因素对指标的影响程度越大,该因素越关键。极差值越小,表示影响程度越不显著,因素重要程度越一般。各因素的交互作用显著性用方差法分析确定,通过F检验法进行显著性判断。
随着技术进步及各新能源材料体系的多样化,合成新材料过程的实验参数与性能指标的作用关系日趋复杂,表现为参数多,单因素变量的