本地部署大模型+anythingllm连接知识库

一、部署

先去ollama官网下载ollama(一个大模型管理平台)

接着可以进官网搜索models,找到对应模型的下载命令

725f6fda917b4211bb2c922d2a25e05c.png

08e7ed6a7ed8483984ca0190df15f39d.png

查看模型的详细信息:ollama info <model>

删除模型:ollama remove <model>

 

二、接知识库

1、下载anythingllm(一个大模型框架,提供一种灵活的方式来继承和使用不同的语言模型,包括托管在ollama或其他平台上的模型)

2、前置设置

选择模型管理器(llm providers):ollama,选择模型:qwen

选择嵌入模型(embedder):把你上传的文本、表格数据等,处理成数字形式的一种低维嵌入向量数据,选择向量数据库,都选默认的

workspace:把不同知识库分隔成一个个工作区

3、上传知识库

可以上传文件和链接,move to workspace,接着右区save and embed

如果上传的是网页链接,则可能会参杂着很多图形化的无用信息,影响数据的质量</

### anythingllm连接数据库的方法 对于`anythingllm`这样的大型语言模型来说,要实现与传统关系型或新型图数据库如Neo4j的交互,通常依赖于中间件或是特定设计的应用程序接口(APIs)[^1]。当涉及到像Neo4j这样的图形数据库时,可以利用其官方提供的Python驱动程序建立链接,并通过Cypher查询语言执行操作。 下面展示了一个简单的例子,说明如何配置环境以及编写基本脚本来让LLM应用程序能够访问和操作基于Neo4j构建的知识图谱: #### 安装必要的软件包 首先确保安装了最新的neo4j python driver版本: ```bash pip install neo4j ``` #### Python代码示例:初始化客户端并执行简单查询 ```python from neo4j import GraphDatabase uri = "bolt://localhost:7687" user = "neo4j" password = "your_password" def create_session(): driver = GraphDatabase.driver(uri, auth=(user, password)) session = driver.session() return session session = create_session() result = session.run( """ MATCH (n) RETURN n LIMIT 5; """) for record in result: print(record["n"]) session.close() ``` 此段代码展示了怎样设置一个到本地运行着的Neo4j实例的安全连接,并发出一条返回前五个节点信息的基本Cypher命令。 为了使`anythingllm`能更高效地处理来自外部数据源的信息,在实际应用场景下还可以考虑集成向量数据库来加速相似度匹配过程,从而提高响应速度和服务质量[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值