Pandas入门

pandas构建在NumPy之上,继承了Numpy高性能的数组计算功能,同时还提供了更多复杂精细的数据处理功能。

核心数据结构

Series

一维数组,类似于带标签的列表或字典。

每个元素都有索引,支持多种数据类型。

DataFrame

二维表格,类似于电子表格或 SQL 表。

每列可以是不同类型的数据,具有行和列索引。

如何使用?

pip install pandas
import pandas as pd

Series

创建Series

pd.Series(列表)

S大写,表明是Series类的构造函数,会返回一个Series类的实例。
打印可以看到Series里的元素及其对应的索引,还有元素类型dtype。

一些属性

在这里插入图片描述
单独获得元素值:
.values——返回NumPy一维数组

单独获得索引:
.index——返回RangeIndex

自定义索引(标签索引,原本的叫位置索引)

在这里插入图片描述
可以加上index=[ ]参数
或者直接传入字典作为参数,自动识别键值作为标签索引

注意:用标签索引进行切片操作时,左闭右闭,即end是包含的
在这里插入图片描述
如果标签索引也是整数的,
索引取值按照标签,切片时按照位置

为了更好地区分:
在这里插入图片描述
loc——用标签索引
iloc——用位置索引

查看某个标签是否存在:
用in即可<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值