论文译摘-人工智能伦理-人工智能伦理研究概述

译者按:当前,人工智能伦理领域的综合性概述文献较为稀缺,本文虽发表时间较早(2022年7月),但较为全面地总结了该领域的核心问题,包括AI带来的伦理风险、全球发布的伦理准则、应对AI伦理问题的多学科方法,以及评估AI伦理性的手段。此外,该文发表在IEEE Transactions on Artificial Intelligence上,具有高度的学术参考价值。

人工智能伦理研究概述

(重点内容翻译及摘录)

摘要:人工智能(AI)已经深刻改变并将继续改变我们的生活。人工智能正在自动驾驶、医疗、媒体、金融、工业机器人、互联网服务等越来越多的领域和场景中得到应用。人工智能的广泛应用及其与经济社会的深度融合提高了效率并产生了效益。同时,它也不可避免地会对现有的社会秩序造成冲击,引发伦理上的关注。人工智能系统带来的隐私泄露、歧视、失业和安全风险等伦理问题给人们带来了很大的困扰。因此,人工智能伦理不仅成为学术界的重要研究课题,也成为个人、组织、国家和社会共同关注的重要课题。本文将通过总结和分析人工智能引发的伦理风险和问题、不同组织发布的伦理指南和原则,解决人工智能伦理问题的方法以及评估人工智能伦理的方法,对该领域进行全面概述。此外,还指出了在人工智能中实施道德规范的挑战和一些未来的前景。我们希望该工作将为该领域的研究人员和从业者,特别是该研究学科的初学者提供系统和全面的AI伦理概述。

影响声明-人工智能伦理是学术界、工业界、政府、社会和个人之间的一个重要新兴话题。在过去的几十年里,人们做出了许多努力来研究人工智能中的伦理问题。本文对人工智能伦理领域进行了全面的概述,包括对人工智能伦理问题的总结和分析。

索引词:人工智能(AI),AI伦理,伦理问题,伦理理论,伦理原则。

一、引言

(略)

本文的主要贡献如下:

1)本综述全面概述了人工智能伦理,包括人工智能的伦理问题和风险、人工智能的伦理准则和原则、解决人工智能伦理问题的方案以及评估伦理人工智能的方法。该概述可以为研究人员和从业人员提供足够的背景、全面的领域知识和路线图。

2) 本文第三部分总结了人工智能带来的伦理问题和风险,并提出了一种新的AI伦理问题分类方法。该分类方法有助于识别、理解和分析人工智能中的伦理问题,并为解决这些问题提供解决方案。此外,本文还讨论了与人工智能系统生命周期不同阶段相关的伦理问题。

3) 第四部分基于来自全球企业、组织和政府发布的 146 项与人工智能伦理相关的指南,对人工智能伦理指南和原则的最新全球概况进行了介绍。这些指南和原则为人工智能的规划、开发、生产和使用提供了高级指导,并为解决人工智能伦理问题指明了方向。

4) 第五部分回顾了多学科方法来解决人工智能伦理问题,包括伦理、技术和法律方法。这不仅提供了关于人工智能伦理方法的翔实总结,而且还从多种角度提出了解决人工智能伦理问题的潜在不同解决方案,而不是仅仅依赖技术方法。

5) 第六部分回顾了评估人工智能伦理的方法。测试或评估人工智能系统是否符合伦理要求是人工智能伦理的重要组成部分。然而,这一方面在现有文献中经常被忽视。据我们所知,本文是首篇总结评估伦理人工智能方面的文章。

6) 最后,指出了人工智能伦理方面的一些挑战以及几个未来的展望,为未来进一步研究提供了一些研究问题和方向。这将有助于感兴趣的研究人员和从业人员在人工智能伦理领域进行进一步的研究。

本文的其余部分组织如下:引言部分后,第二部分简述了本文的综述范围和方法。第三部分全面总结了人工智能引发的伦理问题和风险。第四部分回顾和分析了过去几年发布的人工智能伦理准则和原则。第五部分描述了解决人工智能中伦理问题的范式或方法。第六部分讨论了评估人工智能系统或产品的道德或伦理的方法。第七部分概述了在人工智能中实施道德的挑战,并给出了一些未来设计道德人工智能的观点。第八部分简要总结了这篇文章。

二、范围和方法

(略)

  1. 范围

(略)

我们涵盖了伦理,技术和法律的方法,但更侧重于前两种方法(伦理和技术方法),因为人工智能社区的研究人员可能对这两类方法更感兴趣。

最后,我们总结了如何评估伦理AI,即评估AI的伦理性或道德性

  1. 研究方法

本文涵盖了广泛的文献,包括学术、组织、政府灰色文献来源和新闻报道。

相关文献的检索分两个阶段进行。

第一阶段:使用反映与人工智能伦理相关的不同术语的条目或关键词在Google Scholar、Web of Science、IEEE Xplore、ACM数字图书馆、Science Direct、Springer Link、arXiv和Google上进行搜索。使用的条目或关键词包括:(伦理,道德,责任,负责任,可信赖,可信赖,透明,可解释,公平,有益,稳健,安全,私人,可持续)和/或(问题,风险,指南,原则,方法,方法,评估,评估,挑战)和(人工智能,AI,机器学习,ML,智能系统,智能代理)。我们主要考虑自2010年以来发表或发布的文献,并在标题中包含尽可能多的相关关键词。

第二阶段:我们检查了第一阶段中发现的文献的相关工作,例如第一阶段相同作者的引用文章和其他工作。至于人工智能伦理指南,我们只收集了英文版(或官方英文翻译版)的文件,可以在互联网上访问或下载。本文的补充材料中提供了收集的道德AI指南的完整列表和URL链接。

  • 人工智能的伦理问题和风险

    (略)

本节首先回顾了以往研究中对人工智能伦理问题的四种不同分类。我们提出了一种新的分类,将人工智能伦理问题分为个人、社会和环境层面。此外,我们试图映射与AI系统生命周期阶段相关的伦理问题。

本节的主要贡献在于,我们提出了一种新的人工智能伦理问题分类,以清晰易懂的方式涵盖了所讨论的伦理问题。此外,还讨论了与人工智能系统生命周期各阶段相关的伦理问题。

A.人工智能伦理问题分类综述

回顾收集的文献中发现的四种不同的分类,从不同的角度描述人工智能的伦理问题或问题。其中两份来自政府报告,另外两份来自学术出版物。

  1. 基于人工智能特性、人为因素和社会影响的分类:

A)人工智能特性引起的伦理问题:透明度;数据安全和隐私;自主性、意向性和责任

B)人为因素引起的道德问题:问责制;伦理标准;人权法

c)人工智能伦理问题的社会影响:自动化和工作替代;

可访问性;民主和公民权利

  1. 根据AI和人类的脆弱性进行分类:

AI漏洞带来的伦理问题:机器学习对数据的依赖性;垃圾进/垃圾出;缺陷算法;深度学习黑盒模式

人类脆弱性带来的伦理问题:人工智能滥用;职位替代;机器人伴侣问题

  1. 基于算法、数据、应用以及长期和间接伦理风险的分类:

在中国国家人工智能标准化总体工作组发布的人工智能伦理风险分析报告[38]中,人工智能伦理问题被分为以下四个方面:1)与AI算法相关的伦理问题:算法安全、算法可解释性、算法决策困境;2)与数据有关的伦理问题:隐私保护、识别和处理个人和敏感信息;3)与AI应用相关的伦理问题:算法歧视、算法滥用;4)长期和间接的道德风险:就业、版权或专利权的所有权问题、竞争、责任。

4) 基于人工智能部署的分类:在欧洲议会研究服务部门最近关于人工智能带来的伦理影响和道德问题的研究[51]中,伦理问题被映射到不同的类别,根据人工智能对人类社会、人类心理学、金融体系、法律体系、环境和地球以及信任的伦理影响。

a) 对社会的影响:

劳动力市场(职位小时、歧视);加剧社会不平等;隐私、人权和尊严;偏见;民主

  1. 对人类心理的影响:

人际关系;人格

(c)对金融系统的影响:自动交易代理可能被恶意利用来破坏市场稳定或以其他方式伤害无辜方,难以预测意外情况下表现。

(d)对法律的制度的影响:

刑法:人工智能产品或机器人意识或意识的确认与现行刑法犯意相关确定的矛盾

侵权法:对于个人伤害侵权责任的认定,过失VS产品责任

e) 对环境和地球的影响:

自然资源的使用;污染和废物;能源问题

f)对信任的影响:

研究界的共识是,对人工智能的信任只能通过公平、透明、问责和监管(或可控性)来实现。

  1. 我们提出的分类:个人、社会和环境层面的伦理问题

在本节中,我们建议将人工智能伦理问题分为三个不同层次,即个人、社会和环境层面的伦理问题。个人层面的伦理问题主要包括对个人、他们的权利和福祉产生不良后果的问题[69]。社会层面的人工智能伦理问题考虑人工智能已经或可能为群体或整个社会带来的社会后果[69]。环境层面的人工智能伦理问题关注人工智能对自然环境的影响。我们提出的分类如图2所示。

  1. 个人层面的伦理问题:对个人的安全、隐私、自主权和人格尊严的影响。
  2. 社会层面的伦理问题:对公平与正义、责任与问责、透明度、监督与保密、人工智能的可控性、民主与公民权利、工作替代和人际关系的影响。
  3. 环境层面的伦理问题:自然资源消耗、环境污染、能源消耗成本和可持续性。

C. 人工智能系统生命周期各阶段的关键伦理问题

基于机器学习的 AI 系统 [75] 或产品 [76] 的一般生命周期或开发过程通常包括以下阶段:

业务分析、数据工程、机器学习建模、模型部署以及运营和监控。通常,AI 产品的生命周期从业务分析开始,主要涉及识别和理解要解决的业务问题以及业务指标(或成功标准)。这些指标应包括模型性能指标以及通过利用 AI 模型来改进的业务关键绩效指标。下一步是数据工程,涉及数据收集、数据标注、数据清洗、数据结构化、特征工程以及其他与数据相关的操作。在此之后,流程进入所谓的 ML 建模步骤。此步骤通常涉及算法设计或选择、模型训练和模型评估的迭代过程。如果构建模型令人满意,则流程进入模型部署步骤,该步骤使 ML 模型可供组织内或网络中的其他系统使用,以便模型可以接收数据并返回其预测。操作和监控步骤包括运行 AI 系统并持续评估其性能和影响。此步骤识别问题并通过返回其他步骤来调整或改进 AI 系统,如果必要,则将 AI 系统从生产中退役。

我们试图建立一个将伦理问题与 AI 生命周期阶段联系起来的映射,其中连接意味着伦理问题更有可能在 AI 生命周期中的某个步骤中发生,或者它通常是由此步骤中的某些原因引起的。该映射在表 II 中给出,其中将几个重要的伦理问题与 AI 生命周期的五个步骤联系起来。这种映射将有助于在 AI 系统的设计过程中以主动的方式解决伦理问题。

五、人工智能伦理准则和原则

本节提供人工智能道德准则和原则的最新全球概况,这是通过调查自2015年以来全球公司、组织和政府发布的146份与人工智能道德相关的报告,指南和建议实现的。这些准则和原则为人工智能的规划、开发、生产和使用提供了高层次的指导,并为解决人工智能伦理问题提供了方向。

  1. 人工智能道德准则/指南

    最终,共收集了 146 份人工智能伦理指南。大多数指南是在过去五年内发布的,即从2016年到2020年。2018年发布的指南数量最多,为53份。政府、公司和学术界都对 AI 伦理表示了强烈的关注。

  1. 人工智能伦理原则

围绕五个重要的伦理原则出现了明显的趋同:透明度、公平与正义、责任、不伤害和隐私。

1)透明度:透明度是人工智能伦理辩论中讨论最广泛的原则之一。

2)公平与正义:公正和公平原则指出,人工智能的开发、部署和使用必须是公正和公平的,这样人工智能系统就不应该导致对个人、社区或群体的歧视或偏见。人工智能算法带来的歧视和不公平结果已成为媒体和学术界的热门话题。因此,公平正义原则在过去几年中引起了相当大的关注。

3)责任与问责:责任原则可审计性和可问责性要求人工智能必须是可审计的,也就是说,人工智能的设计者、开发者、所有者和操作者对人工智能系统的行为或决策负责,因此被认为对它可能造成的伤害或不良后果负责。人工智能系统的设计者、构建者和用户是其使用、滥用和行为的道德或伦理影响的利益相关者,他们有责任和机会塑造这些影响。这就要求建立适当的机制,以确保在开发、部署和使用之前和之后,对人工智能系统及其结果承担责任。

4)不伤害:不伤害基本上意味着不伤害或避免对他人造成伤害的风险[81],[82]。

5)隐私:隐私原则旨在确保在使用人工智能系统时尊重隐私和数据保护。人工智能系统应该保护和尊重隐私权和数据保护,并维护数据安全。这涉及到为人工智能系统在其整个生命周期中使用和生成的所有数据提供有效的数据治理和管理[83]。具体而言,数据收集、使用和存储必须遵守与隐私和数据保护相关的法律法规。必须保护数据和算法免遭盗窃。一旦发生信息泄露,雇主或人工智能提供商需要尽快通知员工、客户、合作伙伴和其他相关个人,以最大限度地减少泄露造成的损失或影响。

6)友善:人工智能应该造福人类,造福人类[82]。

7)自由与自治

8)团结:团结原则要求人工智能系统的开发和应用必须与维护人与人之间和世代之间团结的界限相一致。换句话说,人工智能应该促进社会安全和凝聚力,而不应该危及社会纽带和关系。

9)可持续性

10)信任:信任是人类和社会采用人工智能的先决条件,因为信任是人际交往和社会运作的基本原则。

11)尊严:重要的是,人工智能不应侵犯或损害最终用户或社会其他成员的尊严。因此,尊重人的尊严是人工智能伦理中应该考虑的重要原则。因此,人工智能系统的开发应该尊重,支持和保护人们的身心完整性,个人和文化认同感,以及满足其基本需求的方式开发。

六、人工智能伦理问题应对方法

本节回顾了解决或减轻AI伦理问题的方法,试图全面概述解决人工智能伦理问题的现有和潜在方法,包括伦理,技术和法律的方法。

  1. 伦理方法:在人工智能中实施伦理

本节致力于挖掘基于现有伦理理论将伦理实施到人工智能系统中的方法。首先,回顾了伦理理论,特别是与人工智能伦理相关的规范伦理。然后,总结了设计伦理人工智能系统的三种主要方法。

  1. 伦理理论:伦理学(也称为道德哲学)领域关注对正确和错误行为概念的系统化、辩护和推荐。伦理学侧重于判断和确定在特定情况下哪些行为是好的或道德的 [88]。伦理学的哲学研究通常包括三个主要领域:元伦理学、规范伦理学和应用伦理学 [89]。伦理理论的各个分支如图 4 所示。

b) 规范伦理学总结:从以上描述可以清楚地看出,不同的规范伦理学理论会导致对同一行为或决策的不同判断。考虑以下示例 [100]:一位老人在地铁上被一群傲慢的青少年折磨,一位果断的女士出手相助。德性伦理学家会认为她的行为在道德上是合适的,因为它体现了仁爱和勇敢的美德。义务论者会认为她的行为值得称赞,因为它符合帮助有需要的人的规则。后果论者会认为她的行为是好的,因为她最大限度地提高了所有相关方(包括老人和青少年)的整体福祉——老人免受痛苦和耻辱,这超过了青少年寻求的娱乐所带来的益处。表 V 对三种规范伦理学理论进行了简要比较。

2) 在人工智能中实施伦理的方法:本节简要回顾了在人工智能系统中实施伦理的方法和途径,即设计合乎道德的人工智能系统。

在人工智能中植入伦理的现有方法或方法可以分为三种主要类型:自上而下的方法,自下而上的方法和混合方法[101]。

  1. 自上而下的方法:自上而下的方法是指采用特定伦理理论并分析其计算需求,以指导可以实现该理论的算法和子系统的设计,从而实现该理论[102]。自上而下的方法需要正式定义的规则,义务和权利来指导AI代理的决策过程。例如,阿西莫夫的机器人三定律[103]可以被认为是机器人自上而下的伦理体系[101]。该方法通常被理解为具有一组可以转换为算法的规则。这些规则具体规定了代理人的职责或代理人评估其可能采取的各种行动的后果的必要性。

自上而下的方法在所使用的伦理理论方面有所不同。例如,当在自上而下的方法中使用后果主义理论时,推理模型需要评估行动的结果或后果作为决策的基础,即导致良好结果的行动是道德的,否则是不道德的;而如果应用义务论,推理模型将考虑满足特定价值观以进行决策,即遵守义务的行动是道德的,而违反义务的行动是不道德的。

b)自下而上的方法:自下而上的方法假设伦理或道德行为是从观察他人的行为中学习的。在自下而上的方法中,重点在于创造一个环境,让 AI 代理探索行动方案,并对道德上值得赞扬的行动进行奖励或选择 [101]。与自上而下的方法不同,自上而下的方法需要伦理理论或原则来定义什么是道德和什么不是道德,而在自下而上的方法中,伦理原则则是从观察或经验中发现或学习的。这种方法强调,AI 代理需要像小孩一样学习规范和道德,才能成为道德上胜任的代理。

显然,自下而上的方法假设可以从合适的受试者或场景中收集到足够多的关于道德决策及其结果的数据或观察结果。这是使用自下而上方法实现道德人工智能系统的要求。然而,在实践中,这一要求并不容易满足。

c)混合方法:混合方法试图将自上而下和自下而上方法的优点联合收割机结合起来。自上而下的方法利用伦理理论和原则,强调从实体(道德主体)外部产生的明确的伦理关注的重要性。而自下而上的方法更注重通过进化和学习从实体内部产生的道德培养。自上而下和自下而上的方法都体现了道德情感的不同方面。通过结合这些方法,我们或许能够创造出能够在遵守自上而下原则的同时保持自下而上方法的动态和灵活道德的 AI 智能体。[119]–[124] 中已经实现了不同的混合方法。

正如 Gigerenzer [125] 所述,道德行为的本质源于心智与环境的相互作用。根据这种观点,自然和培育在塑造道德行为方面都至关重要。混合方法与这一概念一致。在混合方法中,自上而下的方法使用编程规则,而自下而上的方法则从情境观察或经验中学习规则,分别类似于道德的自然和培育方面。从这个角度来看,因此,混合方法同时考虑了自然和培育。

(d)关于道德方法的说明:(略)

B.技术方法

在本节中,我们将简要总结关于利用技术手段解决人工智能伦理问题的研究现状,这些手段与第四部分B节中讨论的原则相一致。目前,用于缓解相关问题的技术手段仍处于起步阶段。

据我们所知,现有工作主要集中在一些主要的关键问题和原则上,而其他问题和原则很少涉及。因此,我们只对涉及五个关键伦理原则的技术方法进行简要概述。

我们所知,现有的工作主要集中在几个重大和关键的问题和原则上,其他问题和原则很少涉及。因此,我们只对涉及五项关键伦理原则的技术方法进行简要总结。特别地,对于五个关键原则(即透明度、公平与正义、不伤害、责任与问责制以及隐私),一些代表性的研究主题和相关参考文献列在补充材料的表 II 中。

可解释人工智能 (XAI),也称为可理解人工智能,是目前解决人工智能缺乏透明度的主要研究方向和技术方法。XAI 的目标是使人类用户能够理解人工智能系统,特别是机器学习算法提供的结果和输出。Christoph 等人 [128] 概述了 XAI 领域的历史,介绍了最先进的解释方法,并讨论了一些研究挑战。此外,Christoph 还撰写了一本关于可解释机器学习的书籍 [129],这是 XAI 领域的一本热门出版物。

关于公平原则,也有许多致力于消除或减轻人工智能系统,特别是机器学习系统中表现出的偏见或歧视的作品。公平人工智能 [130],其目标是防止对不同子群体的差异化伤害(或利益),是一个非常活跃的研究课题,致力于解决人工智能中缺乏公平性的问题。

非伤害原则包含若干准则,例如安全、安全性和鲁棒性。因此,针对与非伤害原则相关的每个准则,都有一些研究工作。目前,安全 AI(译注:关注点为系统在操作中的行为是否对用户、社会和环境安全)、安全性 AI(译注:关注点为系统免受恶意攻击和操控的能力) 和鲁棒 AI 是实现 AI 中非伤害原则的三个主要研究方向。

随着人工智能在我们生活中的广泛应用,负责任的人工智能变得至关重要。责任是一个相对抽象和宽泛的概念。目前,负责任的人工智能还没有普遍统一的定义或概念,主要涉及问责制,责任,公平性,鲁棒性和可解释性[132]。D

为了解决人工智能中的隐私问题,研究人员做了很多努力。差分隐私[135]是隐私保护ML和数据分析的主要方法之一。最近,提出了一种新的ML范式,即联邦学习[136],[137](也称为分布式ML),以减轻ML中隐私泄露的风险。此外,还提出了一些其他的ML隐私保护技术[138],[139]。至于其他的原则,如善行、自由与自主、尊严等,我们在文献中还没有找到相关的技术方法。这可能是由于难以或不适合使用技术方法来解决与这些原则有关的问题。

总的来说,人工智能伦理是一个相对较新的领域,未来仍需要研究实现这些原则的方法。

C.法律途径:立法与监管

许多政府和组织已经制定了许多法律和法规来管理人工智能的开发和应用。法律的方法已经成为解决人工智能中伦理问题的一种手段。下文列出了过去几年中提出的与人工智能相关的几项法律和法规。

2016年 - 欧盟《通用数据保护条例》 (GDPR):欧盟发布的数据保护和隐私法规,适用于欧盟和欧洲经济区。

2017年 - 美国《安全确保生命未来部署和车辆演进研究法案》 (SELF DRIVE Act):旨在通过支持高度自动化车辆的测试与部署,确保其安全性。

2018年 - 巴西《通用数据保护法》 (Lei Geral de Proteção de Dados, LGPD):巴西颁布的个人数据保护法,保障国内个人数据安全。

2021年 - 欧盟《人工智能法案》 (AI Act):欧盟发布的AI监管法案,提出跨部门的AI系统使用监管框架,适用于欧盟市场。

  • 第六章:评估人工智能伦理的方法

在部署之前,需要对所设计的人工智能系统进行测试或评估,以确定其是否符合伦理要求。本节回顾了评估人工智能伦理的三种方法:测试、验证和标准。

  1. 测试

测试是评估人工智能系统伦理能力的典型方法。通常,在测试系统时,需要将系统的输出与真实情况或预期输出进行比较 [100]。本节重点介绍评估伦理人工智能的测试方法。

本节重点介绍评估道德AI的测试方法。

  1. 道德图灵测试:

在图灵测试的标准版本中[145],一个远程的人类测试者负责根据机器(计算机)和人类主体对测试者提出的各种问题的回答来区分两者。类似地,道德图灵测试 (MTT) 被提出来,通过将标准图灵测试中的对话限制在与道德相关的问题上,来绕过关于道德标准的争议。如果人类询问者无法以高于随机水平的概率区分机器和人类主体,那么该机器就是一个道德主体。

然而,艾伦等人[144]承认,MTT的一个局限性是它强调机器清楚地表达道德判断的能力。为了将焦点从对话能力转移到行动,艾伦等人[144]还提出了一种替代MTT,称为“比较MTT”(cMTT)。

  1. 专家和非专家测试:

专家测试采用规范伦理学中的专家标准来评估人工智能代理的道德。非专家测试以民间道德为基准,在相关基准测试上评估人工智能主体或系统的道德能力。在非专家测试中,公民可以根据自己的道德立场和审查,在评估和评估人工智能系统的道德能力方面发挥作用。

  1. 验证

评估人工智能道德的另一种方法类别包括证明人工智能系统根据一些已知规范正确运行。对于人工智能伦理设计的评估,可以使用多元化的评估标准。无论人工智能进行道德推理的方式如何,最重要的是其道德活动符合伦理设计的目标。

  1. 标准

许多行业标准被提出来指导人工智能的开发和应用,并对人工智能产品进行评估或评估。在本节中,介绍了一些与AI相关的标准。

2014年 - 澳大利亚计算机协会 (ACS) 职业行为准则:制定六项核心伦理价值观及相关专业行为要求,供信息通信技术专业人员遵循。

2018年 - ACM 职业道德和行为准则更新:针对1992年以来的行业变化,更新准则,强调公众利益优先,为计算专业人士提供道德行为指导,并在违规时作为补救依据。

IEEE 全球自主和智能系统伦理倡议项目 - IEEE P7000TM 标准系列:涵盖从数据收集、隐私到算法偏差的多个主题,正在开发中。

ISO/IEC JTC 1/SC 42 (AI标准化委员会):ISO和IEC的联合委员会,负责人工智能领域的标准化,涵盖基础AI标准、大数据、AI可信度、应用和伦理社会问题等。

尽管已经提出了许多标准,但标准(或原则)与实践之间的差距仍然很大。目前,只有少数大型企业,例如 IBM [153] 和微软 [154],实施了自己的行业标准、框架和指南来构建人工智能文化;但对于资源较少的较小企业而言,实践原则差距是一个主要问题。因此,仍需付出许多努力。一方面,需要提出完善的标准;另一方面,需要大力推动标准的实践。

七、挑战与未来展望

在本节中,我们讨论了人工智能伦理中的一些挑战,并从我们的观点出发,给出了一些未来的观点。本部分的目的是为未来进一步的研究提供一些可能的研究问题和方向,从而促进人工智能伦理领域的研究进展、前提和基础。

  1. 人工智能伦理准则和原则的挑战

   人工智能伦理的共识尚未达成,人工智能需要遵循哪些共同原则和价值观尚不清楚。此外,在不同领域应用人工智能时可能需要不同的伦理原则。目前,在我们文献研究中,很少看到针对不同具体应用领域的人工智能伦理研究和讨论。

因此,通过不同组织、领域和政府之间的讨论与合作,达成并确立人工智能的基本和共同的伦理原则至关重要且必要。然后,基于这些基本和共同的原则,每个领域可以进一步完善这些原则,使其在该特定领域内普遍适用。明确人工智能系统需要遵守的伦理原则和价值观是设计符合这些要求的系统的先决条件和基础。

  1. 人工智能伦理实施的挑战

 1) 德行伦理在实践中的挑战:根据德行伦理,如果一个行为主体体现了某种美德,即按照某些道德价值观行事和思考 [93],那么该行为主体的行为在道德上就是好的。仅仅通过观察一个行为或一系列似乎暗示了美德的行为,无法判断一个 AI 系统或行为主体是否具有美德,需要澄清这些行为背后的原因,即这些行为背后的动机需要明确。然而,AI 系统行为背后的动机通常是不清楚的,我们也无法得知,并且很难弄清楚。这是实施德行伦理的主要挑战。此外,当我们基于德行伦理进行道德设计时,AI 系统将与哪些美德特征或特质相一致是一个难题。即使精心选择了美德特质,如何刻画和衡量美德仍然是一项具有挑战性的任务。

2) 道德伦理在实践中的挑战: 道德论者认为,如果一个行为符合某些道德规则或义务、规定和规范,那么该行为就是道德上的善行。尽管道德伦理的规则性本质似乎适合实践,但在实施过程中会出现挑战。首先,在道德设计中应该实施哪些道德规则。其次,在某些情况下,规则之间可能存在冲突。虽然对道德规则进行排序或权衡可以解决这个问题,但确定不同道德规则的优先级顺序通常很困难。

3) 功利主义伦理在实践中的挑战:功利主义伦理仅根据行为的结果来评估行为的道德性。在功利主义伦理的实施过程中,存在两个主要挑战。首先,很难确定行为或决策的结果。对于当前的 AI 系统,由于当前 AI 模型,尤其是人工神经网络缺乏透明度或可解释性,其行为的可能后果通常事先并不清楚。第二个挑战与量化后果有关。由于功利主义伦理旨在最大化效用,如何定义和计算效用是一个重要问题。

4) 不同伦理标准协调的挑战:由于文化、宗教和组织之间的差异,即使在同一语境下,伦理标准也存在差异。统一的伦理标准提案不仅难以实现,而且没有必要。因此,如何实现不同国家和组织之间伦理标准的协调至关重要,也特别具有挑战性。

C.开发技术方法以缓解人工智能伦理问题的挑战

目前,提高可解释性、公平性、隐私保护、安全性、鲁棒性等与伦理AI要求相关的能力是AI社区的热门研究课题。然而,目前大多数研究工作都是从伦理原则的单一维度进行的,例如,XAI专注于增强AI的可解释性,而公平ML致力于减轻ML的不公平或偏见。目前的研究工作中仍然缺乏多种伦理原则或要求的整合。显然,整合多个道德维度,实现多个不同道德原则之间的协同平衡,对于构建符合多个道德原则的道德人工智能系统至关重要。但是,由于不同道德要求之间的冲突或不兼容,通过技术方法将多个道德维度整合到人工智能系统中是非常具有挑战性的。

D. 人工智能伦理评估的挑战

伦理本质上是一个定性概念,它依赖于许多难以量化的特征,例如与文化或种族相关的特征。因此,精确定义伦理非常困难,甚至不可能。结果,对人工智能伦理的评估将始终包含一些主观因素,这取决于评估人工智能的人员。这给人工智能伦理的研究和应用带来了挑战。

  1. 未来展望

  首先,在人工智能中实施伦理时,应该指出人类从不只使用一种伦理理论,而是会根据所面临的具体情况或环境在不同的理论之间切换 [134]。这不仅是因为人类并非经济学理论所认为的纯粹理性主体,还因为严格遵循任何道德理论都可能导致不良结果。这意味着应该为 AI 系统提供不同伦理理论的表征,以及在这些伦理理论之间进行选择的能力。我们将这种方法称为多理论方法。在多理论方法中,人工智能系统可以根据情况类型互换地应用不同的理论。此外,将规范性伦理理论与领域专家认可的领域特定伦理相结合值得实施,因为一个道德的人工智能系统需要被其用户接受。  

从对道德评估方法的回顾中可以发现,迫切需要有效的评估方法,因为我们必须在部署之前评估 AI 系统。目前,很难提出通用的评估方法。因此,研究人员往往专注于特定领域,并在这些领域解决道德能力评估任务。针对人工智能系统道德测试的特定领域基准,例如综合数据集,对于一些关键应用领域,如自动驾驶汽车和医疗保健,也显得十分重要。

最后但同样重要的是,由于先天与后天因素在塑造道德行为方面都很重要,我们建议结合规范伦理学和进化伦理学来设计道德的AI系统。规范伦理学类似于先天的道德能力,而进化伦理学方法则可以通过持续的学习和进化获得新的道德能力。这可能是未来道德AI系统发展的一个有前景的方向。

  • 结论

试图解决人工智能中的伦理问题并设计能够道德行为的道德人工智能系统是一项棘手而复杂的任务。然而,人工智能能否在我们未来的社会中发挥越来越重要的作用,在很大程度上取决于伦理人工智能系统的成功。  人工智能伦理学需要人工智能科学家、工程师、哲学家、用户和政府决策者的共同努力。本文全面概述了人工智能伦理,总结和分析了人工智能带来的伦理风险和问题,不同组织发布的伦理准则和原则,解决人工智能伦理问题或实现人工智能伦理原则的方法,以及评估人工智能伦理(或道德)的方法。此外,还指出了人工智能伦理实践中的一些挑战和未来研究方向。然而,人工智能伦理是一个非常广泛且多学科的研究领域。一篇综述文章不可能涵盖该领域所有可能的话题。我们希望本文可以作为对人工智能伦理感兴趣的人的起点,让他们获得足够的背景知识和鸟瞰视角,以便他们能够进行进一步的调查。

本文为 《人工智能伦理概述》(An Overview of Artificial Intelligence Ethics) 的节选翻译稿,原文由 Changwu Huang、Zeqi Zhang、Bifei Mao 和 Xin Yao 发表,发表于 IEEE Transactions on Artificial Intelligence,并遵循 Creative Commons Attribution 4.0 License(CC BY 4.0) 协议。所有原文版权归原作者及其出版单位所有,翻译仅供个人学习、研究与交流使用,禁止用于任何商业目的。若原文涉及任何版权问题,请及时联系原作者或出版单位。

译者声明:本文翻译工作仅作为学术性分享,不代表原作者或原出版单位的观点,翻译准确性由翻译者负责,但不保证与原文完全一致。如有任何版权争议或侵权问题,请通过论坛私信联系翻译者,翻译内容将在核实后立即删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值