常系数线性微分方程的直接解法-利用特征方程

线性系统的最重要的特征是:系统对激励的反应是线性的,而且系统本身是线性的,牢记叠加组合性。

 

例如:二阶线性微分方程 X"+2Xˊ+5X=0 , X︱t=0 =0 ,Xˊ︱t=0 =0

 

这是个齐次二阶常系数微分方程,对应的初始条件为均0,意味着系统初始状态为0,由于系统无激励,系统的初始状态又为0,所以系统不运动,即X=0。
   

 

        对这种方程,最简单的是根据特征方程的根求系统的响应,即求微分方程的解。其原理如下:
设X=e^(st);带入微分方程,即得特征方程s^2+2s+5=0,解的根为:s1=-1+2i;s2=-1-2i。
故微分方程的解系的两个基为:X1=e^(s1*t)=e^(-t)*e^(i2t);X2=e^(s2*t)=e^(-t)*e^(-i2t)。
通解X=C1*X1+C2*X2。注:因为是线性系统方程,解为基的线性组合。
   

 

          我们更一般的解法是将基转换成实函数的形式。根据欧拉公式,X1‘=(X1+X2)/2=e^(-t)*cos(2t);同理,X2'=e^(-t)*sin(2t)。则X=C1'*e^(-t)*cos(2t)+C2'*e^(-t)*sin(2t)。
 根据初始条件 X︱t=0 =0 ,Xˊ︱t=0 =0,可解得C1‘=0;C2'=0。验证了上面的结论,另外,可以将解带入原微分方程进行检验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值