微分中值定理与导数的应用

微分中值定理

一、罗尔定理 

        在谈论罗尔定理之前,我们先了解一下费马定理。 

        费马定理:设函数f(x)在点x的某邻域U\in(x0)内有定义,并且在x0处可导,如果对任意的x\inU(x0),有f(x)\leq f(x_{0}),那么f^{\prime}(x_{0})=0

        此定理可以简单记为:极值点处的导函数为0。

        费马定理的几何意义:若x为函数f(x0)的一个极值点,则函数在点(x0,f(x0))处的切线一定与x轴平行。
 

        罗尔定理:

 

         

证明罗尔定理

例题

    

二、拉格朗日中值定理 

 

证明拉格朗日中值定理 

常用形式

                                        f(\begin{array}{c}b\end{array})-f(\begin{array}{c}a\end{array})=f'(\begin{array}{c}\xi\end{array})(\begin{array}{c}b-a\end{array}). 

                        f(x+\Delta x)-f(x)=f'(x+\theta\Delta x)\cdot\Delta x\quad(0<\theta<1) 

        自变量取得有限增量\Deltax(\Deltax不一定很小),函数增量\Deltay的准确表达式如上;在某些问题中当自变量x取得有限增量\Deltax而需要函数增量的准确表达式时,拉格朗日定理就显出它的价值。

定理一

        若函数f(x)在区间I上连续,I内可导且导数恒为0,那么f(x) 在区间I上是一个常数。

证明定理一 

 例题

三、柯西中值定理 

        函数在参数方程形式下的拉格朗日中值定理的表达形式,通过这个问题可以得到以下结论。

 

证明柯西中值定理

  

洛必达法则

一、“0/0”型不定式      

证明柯西中值定理

 例题  

 二、“无穷/无穷”型不定式

三、其他型的不定式 

  例题  

泰勒公式 

        泰勒公式的本质是近似,用更高次的幂函数来近似于任意函数。

泰勒公式一 

泰勒公式二 

         泰勒公式一中的Rn(x)不能具体估算出误差的大小,而下面给出的具有另一种余项形式的泰勒定理则解决了这一问题。

 麦克劳林公式

        使用泰勒定理展开,但是假设起始点x0=0。

几个常见函数的泰勒展开 

 例题  

函数的单调性与曲线凹凸性 

函数单调性的判定法 

          

  例题  

         这个定理即可以判断函数单调区间,又可以构造函数来验证不等式。 

 

曲线的凹凸性与拐点 

         通过上述关系式可推出如下定理:

拐点

        

 例题  

函数的极值与最值 

函数的极值与求法 

        函数的极大值和极小值的概念是局部性的。

        极值定义:设函数f(x)在点x0的某邻域中有定义,在邻域中任意x有f(x)<f(x_0)或者f(x)>f(x_{0}),那么就称f(x0)是函数f(x)的极大值(或极小值)。 

         

        判断极大值与极小值的充分条件: 

        当函数f(x)在驻点处的二阶导数存在且不为0时,也可以用下述定理来判定f(x)在驻点处是极大值还是极小值

最大值与最小值问题 

        首先,根据闭区间上连续函数的性质可知,f(x)在[a,b]上的最大值和最小值一定存在,最值即有可能是极值,也可能在区间的端点处取得最值。

         因此,可用如下方法求f(x)在[a,b]上的最大值和最小值。

  例题  

描绘函数图像         

渐近线

一、水平渐近线 

二、垂直渐近线 

三、斜渐近线 

  例题   

 描绘图像的步骤

 例题 

曲率 

弧微分 

        弧微分是微积分中的一个重要概念,它是用来描述平面上或空间中某曲线局部的一小段弧长的微小增量。

        如果给定一条由连续可微函数 y=f(x) 定义的曲线,那么在这条曲线上任意一点M(x,y),我们可以用一个小线段Δs近似地代替曲线上的微小弧长。 

曲率及其计算公式 

        曲率表示弧线的弯曲程度。

影响曲率的因素 

证明曲率的计算 

  例题 

 

曲率圆与曲率半径  

        与曲线上一点的切线相切的圆叫做曲率圆。 

        如上图所示,曲率圆的圆心D叫做曲线在点M处的曲率中心,曲率圆的半径p叫做曲线在点M处的曲率半径。曲率圆与曲线在点M有相同的切线和曲率。

        曲率K与曲率半径P有如下关系:

        \rho=\frac{1}{K},K=\frac{1}{\rho}. 

  例题 

 

曲率中心的计算公式  渐屈线与渐伸线

曲率中心计算式 

        设已知曲线方程是y=f(x),曲线在对应点M(x,y)的曲率中心D(a,b)的坐标如下

渐屈线与渐伸线 

         当点(x,y)沿曲线C移动时,相应的曲率中心D的轨迹曲线G称为曲线C的渐屈线,而曲线C称为曲线G的渐伸线。渐屈线的参数方程为

例题 

  • 25
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值