微分中值定理
一、罗尔定理
在谈论罗尔定理之前,我们先了解一下费马定理。
费马定理:设函数f(x)在点x的某邻域U(x0)内有定义,并且在x0处可导,如果对任意的x
U(x0),有
,那么
此定理可以简单记为:极值点处的导函数为0。
费马定理的几何意义:若x为函数f(x0)的一个极值点,则函数在点(x0,f(x0))处的切线一定与x轴平行。
罗尔定理:
证明罗尔定理
例题
二、拉格朗日中值定理
证明拉格朗日中值定理
此处所构造的函数的意义:
目的是找两个端点相等,构造的函数是φ(x)是曲线与直线的差值;而L(x)是利用点斜式建立的直线方程
常用形式
自变量取得有限增量x(
x不一定很小),函数增量
y的准确表达式如上;在某些问题中当自变量x取得有限增量
x而需要函数增量的准确表达式时,拉格朗日定理就显出它的价值。
定理一
若函数f(x)在区间I上连续,I内可导且导数恒为0,那么f(x) 在区间I上是一个常数。
证明定理一
例题
三、柯西中值定理
函数在参数方程形式下的拉格朗日中值定理的表达形式,通过这个问题可以得到以下结论。
证明柯西中值定理
洛必达法则
一、“0/0”型不定式
证明柯西中值定理
例题
二、“无穷/无穷”型不定式
三、其他型的不定式
例题
泰勒公式
泰勒公式的本质是近似,用更高次的幂函数来近似于任意函数。
泰勒公式一
泰勒公式二
泰勒公式一中的Rn(x)不能具体估算出误差的大小,而下面给出的具有另一种余项形式的泰勒定理则解决了这一问题。
麦克劳林公式
使用泰勒定理展开,但是假设起始点x0=0。
几个常见函数的泰勒展开
例题
函数的单调性与曲线凹凸性
函数单调性的判定法
例题
这个定理即可以判断函数单调区间,又可以构造函数来验证不等式。
曲线的凹凸性与拐点
通过上述关系式可推出如下定理:
拐点
例题
函数的极值与最值
函数的极值与求法
函数的极大值和极小值的概念是局部性的。
极值定义:设函数f(x)在点x0的某邻域中有定义,在邻域中任意x有或者
,那么就称f(x0)是函数f(x)的极大值(或极小值)。
判断极大值与极小值的充分条件:
当函数f(x)在驻点处的二阶导数存在且不为0时,也可以用下述定理来判定f(x)在驻点处是极大值还是极小值
最大值与最小值问题
首先,根据闭区间上连续函数的性质可知,f(x)在[a,b]上的最大值和最小值一定存在,最值即有可能是极值,也可能在区间的端点处取得最值。
因此,可用如下方法求f(x)在[a,b]上的最大值和最小值。
例题
描绘函数图像
渐近线
一、水平渐近线
二、垂直渐近线
三、斜渐近线
例题
描绘图像的步骤
例题
曲率
弧微分
弧微分是微积分中的一个重要概念,它是用来描述平面上或空间中某曲线局部的一小段弧长的微小增量。
如果给定一条由连续可微函数 y=f(x) 定义的曲线,那么在这条曲线上任意一点M(x,y),我们可以用一个小线段Δs近似地代替曲线上的微小弧长。
弧微分的三个公式
曲率及其计算公式
曲率表示弧线的弯曲程度。
影响曲率的因素
证明曲率的计算
例题
曲率圆与曲率半径
与曲线上一点的切线相切的圆叫做曲率圆。
如上图所示,曲率圆的圆心D叫做曲线在点M处的曲率中心,曲率圆的半径p叫做曲线在点M处的曲率半径。曲率圆与曲线在点M有相同的切线和曲率。
曲率K与曲率半径P有如下关系:
例题
曲率中心的计算公式 渐屈线与渐伸线
曲率中心计算式
设已知曲线方程是y=f(x),曲线在对应点M(x,y)的曲率中心D(a,b)的坐标如下
渐屈线与渐伸线
当点(x,y)沿曲线C移动时,相应的曲率中心D的轨迹曲线G称为曲线C的渐屈线,而曲线C称为曲线G的渐伸线。渐屈线的参数方程为
例题