不定积分的概念与性质
一、原函数与不定积分的概念
定义1 如果在区间I上,可导函数F(x)的导函数为f(x),即对xI,都有或者,那么函数F(x)就称为f(x)在区间I上的一个原函数。
原函数存在定理:连续函数一定有原函数。
不定积分的概念
由上可知:若F(x)是f(x)在区间Ⅰ上的一个原函数,那么F(x)+C就是函数f(x)的不定积分.即
此外,微分运算与求不定积分运算是可逆的,当微分符号与积分符号在一块起抵消作用。
例题
二、基本积分表
三、不定积分的性质
性质1
性质2
例题
换元积分法
第一类换元法
例题
第二类换元法
概念太抽象了,底层原理是通过换元将复杂因式替换掉,直接用例题理解更加直观。
例题
分部积分法
例题
有理函数的积分
1.什么是有理分式
2.如何将无理分式改成有理分式
3.有理分式求解方法
例题
可化为有理函数的积分举例
三角函数的积分
本例所用的变量代换对三角函数有理式的积分都可以应用.
根式换元积分