不定积分

本文介绍了不定积分的基础概念,包括原函数、不定积分的定义及其与微分的关系,列举了基本积分表,并详细讲解了换元积分法(第一类和第二类)、分部积分法以及有理函数和三角函数积分的处理技巧。
摘要由CSDN通过智能技术生成

不定积分的概念与性质

一、原函数与不定积分的概念

        定义1  如果在区间I上,可导函数F(x)的导函数为f(x),即对x\inI,都有F^{\prime}(x)=f(x)或者\mathrm{d}F(x)=f(x)\mathrm{d}x,那么函数F(x)就称为f(x)在区间I上的一个原函数。

         原函数存在定理:连续函数一定有原函数。

不定积分的概念 

        

        由上可知:若F(x)是f(x)在区间Ⅰ上的一个原函数,那么F(x)+C就是函数f(x)的不定积分.即\int f\big(x\big)dx=F\big(x\big)+C.
 

        此外,微分运算与求不定积分运算是可逆的,当微分符号与积分符号在一块起抵消作用。 

                                                 \int F'\left(x\right)\mathrm{d}x=F\left(x\right)+C

例题 

 

二、基本积分表 

三、不定积分的性质 

性质1 

 

性质2 

 例题 

换元积分法

 第一类换元法

 

 例题  

第二类换元法 

        概念太抽象了,底层原理是通过换元将复杂因式替换掉,直接用例题理解更加直观。

 例题   

 

分部积分法 

  例题  

有理函数的积分 

 1.什么是有理分式

2.如何将无理分式改成有理分式 

         

3.有理分式求解方法 

  例题   

 可化为有理函数的积分举例

三角函数的积分 

 

 

         本例所用的变量代换u=\tan{\frac{x}{2}}对三角函数有理式的积分都可以应用.

 

根式换元积分 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值