LLM学习笔记(1)--本地部署ChatGLM3

使用chatGLM3-6b作为预训练模型,计划完成部署并能实现其自带一些demo。

目录

出现问题一:在安装依赖时出现“Installing build dependencies ..."停顿

        原因:推断是网络问题导致依赖下载失败。

        解决方法:通过使用镜像源下载解决问题。

问题二:huggingface_hub==0.23.0时运行出现“ModuleNotFoundError: No module named 'huggingface_hub.inference._text_generation” 的报错

        原因:应该是huggingface_hub的版本不对。

        解决方法:

问题三:在conda安装时并出现以下报错:pip的依赖解析器目前没有考虑所有已安装的包。

        原因:阅读报错内容可知

        解决方法:对照依赖。

问题四:RuntimeError: Tensor on device cpu is not on the expected device meta!

        原因:

        解决方法:


 

出现问题一:在安装依赖时出现“Installing build dependencies ..."停顿

        原因:推断是网络问题导致依赖下载失败。

        解决方法:通过使用镜像源下载解决问题。

具体代码如下:

pip install -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com -r requirements.txtc6db4b4e7e0a42a69e036ae1a44c76a1.png

 

问题二:huggingface_hub==0.23.0时运行出现“ModuleNotFoundError: No module named 'huggingface_hub.inference._text_generation” 的报错

030370670bfc4de78aae58ae48bc6506.png

       

        原因:应该是huggingface_hub的版本不对。

        解决方法:

通过pip show huggingface-hub
查看huggingface-hub的版本

pip uninstall huggingface-hub
来卸载掉huggingface_hub

然后再通过

pip install huggingface-hub==0.21.4
安装指定版本的是huggingface-hub
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/psbeond/article/details/137919575

后再次运行,出现问题四。

 

问题三:在conda安装时并出现以下报错:pip的依赖解析器目前没有考虑所有已安装的包。

6f17ecd3ece24ebe947a41943375b3b9.png

        原因:阅读报错内容可知

这种行为是下列依赖冲突的根源。dataset2.19.1需要huggingface-hub>=0.21.2,但你有huggingface-hub 0.19.4,这是不兼容的。transformers4.44.2需要huggingface-hub<1.0,>=0.23.2,但你有huggingface-hub 0.19.4,这是不兼容的。

808fe35146b64d01b0bc26b104b19729.png

        解决方法:对照依赖。

将transformers版本改为4.40.2,并将其他依赖均对照requirement.txt进行版本矫正。

 

问题四:RuntimeError: Tensor on device cpu is not on the expected device meta!

运行时错误:设备cpu上的张量不在预期的设备元上!

并发现GPU没有运作

3f1087d604cc4395813ec2f43d90689a.png

        原因:

发现是pip安装使用了阿里云作为镜像源的问题。我主观凭感觉是阿里云这边不支持gpu的pytorch。然后换了conda并用清华源安装pytorch后,验证成功。

安装pytorch的代码:(使用的12.1的版本) 

        解决方法:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/ -c nvidia

验证cuda和torch是否可用

443a34de2dcb4ff582d0834503a3d023.png

参考文章:【玩转 GPU】本地私有化部署大模型--chatGLM(尝鲜篇)_大模型私有化部署-CSDN博客

 

### 解决 `pip install` 卡在 &#39;installing build&#39; 的问题 当遇到 `pip install` 过程中卡住的情况,通常是因为网络连接不稳定、依赖项缺失或是环境配置不正确等原因造成的。以下是几种可能的解决方案: #### 1. 使用 `-v` 参数查看详细日志 通过增加命令的详细程度来获取更多信息可以帮助定位具体原因。可以尝试运行带有 `-v` 参数的命令: ```bash pip install modulename -v ``` 这会显示更详细的安装过程信息,有助于排查问题所在[^1]。 #### 2. 更新 pip 和 setuptools 工具 有时旧版本的工具可能会导致兼容性问题,因此建议先更新这些工具到最新版: ```bash python -m pip install --upgrade pip setuptools wheel ``` 这样能确保使用的包管理器是最新的,并且支持最新的打包标准[^3]。 #### 3. 尝试离线安装或指定镜像源 如果网络条件较差,则可以选择下载.whl文件后进行本地安装;或者切换成国内较快的速度更快的PyPI镜像站点,比如阿里云等: ```bash pip install modulename -i https://mirrors.aliyun.com/pypi/simple/ ``` 对于某些特定模块如pysqlcipher3,也可以考虑从GitHub上克隆仓库并手动编译安装[^2]。 #### 4. 检查系统库路径设置 确认系统的开发库路径是否已正确添加至环境变量中,特别是针对C++扩展构建时所需的头文件和静态链接库位置。例如,在Windows环境下应包含如下目录: ``` E:\VisualStudio\VC\Tools\MSVC\14.29.30133\lib\x64; C:\Program Files (x86)\Windows Kits\8.1\Lib\winv6.3\um\x86; C:\Program Files (x86)\Windows Kits\10\Lib\10.0.14393.0\ucrt\x86 ``` 以上路径需根据实际安装情况进行调整[^4]。 #### 5. 清理缓存重试 有时候之前的失败操作会在临时文件夹留下残留数据影响后续执行,可以通过清理pip缓存后再重新尝试解决问题: ```bash pip cache purge ``` 之后再正常执行安装指令即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值