在快速发展的人工智能领域,大型语言模型已成为该领域最新突破的主角。
文本生成已成为一项突破性的功能,改变了机器理解和生成类似人类的文本的方式。正是由于这种流行,才推出了多种工具来简化和促进 LLM 的工作流程。
大型语言模型(LLM)迅速普及,几乎每周都会出现新的模型,这引发了用于容纳这项技术的托管选项的同步增长。在可用于此目的的众多工具中,Hugging Face 的文本生成推理 (Text Generation Inference,TGI) 尤其值得一提,因为它允许我们在本地机器上将 LLM 作为服务运行。
简单地说,它允许我们有一个端点来调用我们的模型。
本指南将探讨 Huggingface TGI 为何会改变游戏规则,以及如何利用它来创建复杂的 AI 模型,该模型能够生成与人类生成的文本越来越难以区分的文本。
什么是Huggingface Text Generation Inference?
Huggingface Text Generation Inference(也称为 TGI)是一个用 Rust 和 Python 编写的框架,用于部署和提供大型语言模型。它是一个可用于部署和提供 LLM 的生产工具包。
Huggingface 根据 HFOILv1.0 许可证开发和分发它,允许商业使用,前提是它作为所提供产品或服务中的辅助工具,而不是主要焦点。它解决的主要挑战是:
- 高性能文本生成。TGI使用张量并行(一种用于在多个 GPU 中拟合大型模型的技术)和动态批处理(在服务器内部动态批处理提示)等技术来优化流行开源 LLM 的性能,包括 StarCoder、BLOOM、GPT-NeoX、Llama 和T5等模型。
- 高效的资源使用。连续批处理、优化代码和张量并行等功能使 TGI 能够同时处理多个请求,同时最大限度地减少资源使用。
- 灵活性。TGI支持各种安全功能,如水印、logit 扭曲(通过向特定标记注入偏差值来修改特定标记的 logit)以进行偏差控制,以及停止序列以确保负责任且受控的 LLM 使用。
Huggingface 优化了一些 LLM 的架构,以便它们在 TGI 上运行得更快。这包括LLaMA、Falcon7B 和 Mistral 等流行模型。完整列表可在其文档中找到。