1.创新点分析
概述
本文介绍了一个改进版 Vision Transformer (ViT) 的实现。
该实现通过引入 Channel Prior Convolutional Attention (CPCA) 模块来增强模型的特征提取能力。代码结合了标准的 ViT 架构和创新的注意力机制,在保持 Transformer 优势的同时,融入了卷积神经网络的局部感知特性。
代码结构
整个实现包含三个主要部分:
CPCA
模块 - 自定义的注意力机制ViTWithCPCA
类 - 将 CPCA 集成到 ViT 中的包装器get_model
函数 - 模型构建的便捷接口
CPCA 模块详解
class CPCA(nn.Module):
"""Channel Prior Convolutional Attention module"""
def __init__(self, channels, reductio