图像分割是计算机视觉领域的核心技术之一,旨在将图像中的每个像素划分到特定类别,从而精准识别目标轮廓。它在自动驾驶、医学影像分析、遥感监测等领域发挥着重要作用。
图像分割的三大层次
1. 语义分割:为每个像素分配一个类别标签(如“天空”“车辆”),但不区分同类物体个体。
2. 实例分割:在语义分割基础上,区分同一类别的不同实例(如区分不同行人),常用于目标检测。
3. 全景分割:结合前两者,为每个像素同时分配语义类别和唯一实例ID,兼顾背景与前景的完整解析。
核心应用场景
人像抠图:精准分离人物与背景。
自动驾驶:识别道路、车辆、行人等关键信息。
医学影像:提取病灶或组织区域,辅助诊断。
主流数据集
VOC数据集:涵盖20类物体,支持语义与实例分割,包含近万张标注图像。
Cityscapes:聚焦街景,含5000张精细标注图像,适用于自动驾驶场景。
COCO:覆盖91类复杂日常场景,以“人类4岁可辨识”为标准,数据规模庞大。
评估指标
mIoU(平均交并比):衡量预测区域与真实标注的重合度,是核心评估标准。
Pixel Accuracy:逐像素分类精度,适用于简单场景。
网络结构设计
图像分割模型通常采用“编码器-解码器”架构:
编码器(卷积模块):通过卷积提取多层次特征。
解码器(反卷积模块):通过转置卷积上采样,恢复原图分辨率并输出分割结果。
未来展望
随着深度学习发展,图像分割技术正向更细粒度、更高效率的方向演进。其在工业检测、虚拟现实等领域的潜力亟待挖掘,未来或将成为智能化社会的基石技术之一。
无论是精准医疗还是无人驾驶,图像分割都扮演着“视觉理解之眼”的角色,持续推动AI技术落地生根。