从零训练Bert架构大模型

本文详细介绍了如何从头构建BERT模型,包括tokenizer的WordPiece分词器训练,以及模型的配置、训练数据处理和BERTLMHeadModel的训练过程。作者还展示了如何在Transformers库中应用这些模型进行推理和模型训练的指导。
摘要由CSDN通过智能技术生成

本文章不是模型微调,是从零构架大模型,是基于Bert架构的。 本文主要分两块,一个是tokenizer的构建。二是模型的构建和训练

第一部分 tokenizer分词器训练

bert的编码用的是WordPiece.

分词器训练分4个步骤,1:normalize; 2:pre_tokenizer预分词; 3:model; 4:post_processor后处理

step1 导包

pyton
复制代码
from tokenizers import Tokenizer,processors
from tokenizers.models import WordPiece
from tokenizers.trainers import WordPieceTrainer
from tokenizers.normalizers import BertNormalizer
from tokenizers.pre_tokenizers import BertPreTokenizer
from tokenizers.decoders import WordPiece as WordPieceDecoder

step2 模型初始化,dataset(本文用的是文本)初始化

python
复制代码
tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
files =  ["/sanguo.txt"]  #你的训练数据,此处用的是三国演义

step3 normalize

python
复制代码
tokenizer.normalizer = BertNormalizer(lowercase=True)

step4 预分词

python
复制代码
tokenizer.pre_tokenizer = BertPreTokenizer()

step 5 添加special_token并模型训练

python
复制代码
special_tokens = ["[UNK]", "[PAD]", "[CLS]", "[SEP]", "[MASK]"]
trainer = WordPieceTrainer(vocab_size=50000, show_progress=True, special_tokens=special_tokens)
tokenizer.train(files, trainer)

step 6 后处理及加入解码器

python
复制代码
cls_token_id = tokenizer.token_to_id("[CLS]")
sep_token_id = tokenizer.token_to_id("[SEP]")
tokenizer.post_processor = processors.TemplateProcessing(
    single=f"[CLS]:0 $A:0 [SEP]:0",
    pair=f"[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
    special_tokens=[("[CLS]", cls_token_id), ("[SEP]", sep_token_id)],
)
tokenizer.decoder = WordPieceDecoder(prefix="##")

step 7 模型保存

python
复制代码
tokenizer.save("tokenizer.json")

如果要在Transformers中使用这个分词器,我们需要将它包装在一个PreTrainedTokenizerFast中。在这我们使用特定的标记器类BertTokenizerFast

python
复制代码
from transformers import BertTokenizerFast

wrapped_tokenizer = BertTokenizerFast(tokenizer_object = tokenizer)
wrapped_tokenizer.save_pretrained("./bert")

./bert文件夹下,新增了如下的文件

image.png

到此,分词器训练成功,我们的第一步完成,接下来是第二步,模型训练

第二部分 模型训练

step 1 导包

python
复制代码
from transformers import BertConfig,BertLMHeadModel,BertTokenizer,LineByLineTextDataset,DataCollatorForLanguageModeling,Trainer, TrainingArguments

step 2 加载第一部分训练的分词器

python
复制代码
tokenizer = BertTokenizer.from_pretrained("./bert")

step 3 模型配置

python
复制代码
config = BertConfig(
    vocab_size=tokenizer.vocab_size,
    is_decoder=True
)
model = BertLMHeadModel(config)

step 4 训练数据加载及处理

python
复制代码
dataset = LineByLineTextDataset(
    tokenizer=tokenizer,
    file_path="./sanguo.txt",  # 你的训练数据
    block_size=32
)

data_collator = DataCollatorForLanguageModeling(
    tokenizer=tokenizer,
    mlm=False,
    mlm_probability=0.15
)

step 5 训练参数,训练器等设定

python
复制代码
training_args = TrainingArguments(
    output_dir="./output",
    overwrite_output_dir=True,
    num_train_epochs=20,
    per_device_train_batch_size=16,
    save_steps=2000,
    save_total_limit=2
)
trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=data_collator,
    train_dataset=dataset
)

trainer.train()

step 6 模型保存

python
复制代码
model.save_pretrained("./bert")

训练完毕后,./bert文件夹下新增了如下文件

image.png

到此,我们已经构建并训练完成bert大模型了,我们推理一下看看

模型推理测试

python
复制代码
from transformers import pipeline, set_seed

generator = pipeline("text-generation", model="./bert_model")
set_seed(42)
txt = generator("吕布", max_length=50)
print(txt)

image.png

再来一个

python
复制代码
txt = generator("接着奏乐", max_length=50)
print(txt)

image.png

看起来不错,比我参考的gpt2的强点,可能bert架构在小训练量的情况比gpt架构好点吧。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓

在这里插入图片描述

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓

在这里插入图片描述

  • 15
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值