AI菜鸟向前飞 — 再谈Prompt

前言

提示词工程(Prompt engineering)是设计和改进初始文本或输入(prompt)的过程,这些文本或输入被提供给像ChatGPT这样的语言模型以生成响应。它包括设计提示,引导模型生成特定的色调、风格或内容类型。

要素

写好提示词最基本的要素

  • 使用文字和明确的语言
  • 要求模型(Model)作为此主题的专家
  • 要求模型(Model)作为特定的一个人或一群人
  • 要求模型逐步思考,尤其是在中度到复杂的任务
  • 举例输出,给出10个以上不同的例子
  • 完善结果,重新撰写,使其更有吸引力,使用更清晰的语言,并使用小标题使其更具可读性。

框架

CRISPE Prompt Framework

步骤含义示例
Capacity and Role扮演什么角色作为测试专家
Insight提供背景及上下文信息在互联网软件行业拥有十多年测试经验的
Statement要求做什么提供各种软件测试方法、技巧和工具,可以依据业务特定作出有针对性的质量保证体系,并给出落地执行方案
Personality响应风格、个性、方式等回答问题时,可以以老师的口吻,并可以按照问题、回答的模型输出问题和答案
Experiment提供多个样例基于一个问题,给出多种不同角度的回答

参考:github.com/mattnigh/Ch…

例子

  1. awesome-chatgpt-prompts
  • 链接:github.com/PlexPt/awesome-chatgpt-prompts
  1. awesome-chatgpt-prompts-zh
  • 链接:github.com/L1Xu4n/Awesome-ChatGPT-prompts-ZH_CN
  1. Awesome-ChatGPT-prompts-ZH_CN
  • 链接:github.com/wikieden/Awesome-ChatGPT-Prompts-CN
  1. Awesome-ChatGPT-Prompts-CN
  • 链接:github.com/wikieden/Awesome-ChatGPT-Prompts-CN
  1. Awesome-AI-GPTs
  • 链接:github.com/EmbraceAGI/Awesome-AI-GPTs
  1. Awesome-GPTs
  • 链接:github.com/lxfater/Awesome-GPTs
  1. chatgpt-prompts
  • 链接:github.com/pacholoamit/chatgpt-prompts
  1. awesome-chatgpt-content-creation-prompts
  • 链接:github.com/aminblm/awesome-chatgpt-content-creation-prompts
  1. chatgpt-engineer-prompts
  • 链接:github.com/camsong/chatgpt-engineer-prompts
  1. awesome-chatgpt-prompts-zh-CN
  • 链接:github.com/CHENJIAMIAN/awesome-chatgpt-prompts-zh-CN

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值