【无标题】LLM 各种技巧| Prompt Engineering 大总结|指南二

LLM 各种技巧| Prompt Engineering 大总结|指南二

截止至今,关于LLM 的优化与技巧层出不穷,几乎每个月都有新的技术和方法论被提出,因此本篇主要是要介绍在各种不同情境下,LLM 的各种Prompt Engineering 技巧,每篇都有附上论文连结与架构图,方便你快速检阅,希望能助帮你深入了解Prompt Engineering 领域的最新进展及其发展趋势。

3. Reduce Hallucination

减少幻觉现象是LLM 的一个关键挑战。技术如Retrieval Augmented Generation (RAG)、ReAct Prompting、Chain-of-Verification (CoVe)等,都是为了减少LLM 产生无依据或不准确输出的情况。这些方法通过结合外部信息检索、增强模型的自我检查能力或引入额外的验证步骤来实现。

3.1 Retrieval Augmented Generation (RAG)

虽然LLM 在文本生成领域已经取得了突破性的进展,但它们对有限且固定训练资料的依赖,限制了它们在需要广泛外部知识的任务上提供准确答案的能力。传统的提示技术无法克服这一限制,而且需要进行成本高昂的模型重新训练。面对这一挑战,Lewis et al. (2020)[1]提出了一种称为Retrieval Augmented Generation (RAG) 的创新方法,它通过将资讯检索技术无缝融入提示过程中,提供了一个全新的解决方案。RAG 方法分析用户的输入,生成针对性的查询,在一个预建的知识库中检索相关资讯,然后将检索到的资讯片段整合进原始提示,为之增添背景上下文。这种方法不仅提升了答案的创新性和准确性,而且通过其灵活的特性,突破了传统模型的局限,为那些依赖于最新知识的任务带来了显著的改进。在ODQA 的标准测试中,RAG模型超越了seq2seq 模型和特定任务的架构,其准确匹配得分在TriviaQA 资料集上达到了56.8%,在Natural Questions 资料集上达到了44.5%。

RAG的详细介绍[2]与实作[3]可以参考我的其他文章。

3.2 ReAct Prompting

与传统研究将推理和行动视为独立元素的方法不同,Yao et al. (2022)[4]提出ReAct 技术,在赋予LLM 生成推理的同时,也给予其采取行动的能力。这种一体化的方法促进了推理与行动之间更强的协同作用,使模型在面对突发事件时,能够更加有效地拟定、跟踪及更新其行动计划。ReAct 技术已被运用于多种语言处理和决策任务中,并在效能上超越了当前的先进方法。特别是在问题解答(HotpotQA) 和事实核查(Fever) 任务中,ReAct 通过与Wikipedia API 交互,有效地应对了资讯的虚构与错误传播问题,提供了更加清晰的解决方案路径。在如ALFWorld 和WebShop 这样的互动式决策任务中,ReAct 同样展现了优异的表现,成功率分别达到34% 和10%,这些成绩是在最小上下文范例输入的条件下实现的。

在这里插入图片描述

3.3 Chain-of-Verification (CoVe) Prompting

为了幻觉现象,Dhuliawala et al. (2023)[5]提出了一种称为CoVe 的方法。这个方法主要有四个步骤:

    1. 生成初步答案
    1. 规划验证问题以检验工作
    1. 独立解答这些问题
    1. 根据验证的结果来修正初步答案

CoVe 模仿人类进行验证的思维过程,提升了大语言模型输出的一致性与准确性。在处理列表问题、问答和长文本生成等任务时,CoVe 有效降低了虚构资讯的发生,同时确保了提供信息的真实性。通过精心设计的验证问题,模型能够辨识自身的错误并进行修正,从而显著提高了准确率。

在这里插入图片描述

3.3 Chain-of-Note (CoN) Prompting

Retrieval-augmented language models (RALMs) 通过整合外部知识以减少资讯虚构现象,但这些外部资讯的准确性不总是正确,有时候甚至可能会误导答案。面对判断现有知识是否充分的挑战,标准RALMs 往往在缺乏确切资讯时难以回答「不知道」。为了解决这些问题,Yu et al. (2023)[6]提出了一个新方法,旨在通过有效管理噪音较大和不相关的文档,以及准确处理未知情境来增强RALMs 的稳健性。CoN 方法通过系统性地评估文档的相关性,专注于筛选出关键且可靠的资讯,同时排除那些无关的内容。这使得模型在给出答案时,能够更加精确且与上下文紧密相关。在多个开放域问答资料集上的实验证明,CoN 方法显著提高了对于含有较大噪音文档的准确匹配得分,平均提升了7.9分,并将对于超出预训练知识范围的问题的拒答率提高了10.5分,从而在性能和可靠性上获得了明显的提升。

在这里插入图片描述

4. User Interface

在这章节中,我们将探讨如何通过Active-Prompt 技术增强与使用者的交互。这牵涉到设计能够激励使用者,使其提供更有帮助的反馈或信息的提示,从而实现更高效和满意的交互体验。

4.1 Active Prompting

Diao et al. (2023)开发的Active Prompting,旨在使LLM 更有效地适应各种复杂的推理任务。这个方法引入针对任务的范例提示和CoT,来提升模型在复杂问答中的表现。与传统依赖固定样本的CoT 不同,Active Prompting 采用了一种新策略,专注于识别并选择对模型进步最有帮助、最具不确定性的问题进行标注。这一方法得到了基于不确定性的主动学习策略的启发,透过评估不同的不确定性指标来优化问题的选择过程。在八项复杂推理任务的表现上,Active Prompting 显著优于自我一致性策略,在text-davinci-002 和code-davinci-002 模型上分别达到了平均7.0% 和1.8% 的提升,展示了其领先的技术效果。

在这里插入图片描述

5. Fine-Tuning and Optimization

这部分将介绍如何优化模型的表现。这包括使用机器学习技术来发现和应用最有效的提示策略,从而进一步提升LLM的效率和准确性。

5.1 Automatic Prompt Engineer (APE)

一般而言,为LLM 设计有效的Prompts 需专家细心打造,这是一项复杂的任务。然而,Zhou et al. (2022)提出的APE 技术,开启了自动创建并选择指令的新途径。APE 技术突破了手动和固定提示的限制,能够针对特定任务动态生成并选出最有效的提示。这一方法先分析用户输入,设计一系列候选指令,再透过强化学习选择最优提示,并能即时适应不同情境。经过在多样的BIG-Bench 测试套件和CoT 任务上的广泛测试,APE 展现了显著成效,在大部分情况下(19/24个任务)胜过了人工编写的Prompts,显著增强了LLM 的推理性能。APE 技术的创新性进展,为LLM 处理更广泛任务提供了更高效、更灵活的方式,最大化发挥了它们在各种应用场景中的潜力。

在这里插入图片描述

6. Knowledge-Based Reasoning and Generation

6.1 Automatic Reasoning and Tool-use (ART)

LLM 在处理复杂任务时,因推理能力有限和无法利用外部工具而受限。针对这一问题,Paranjape et al. (2023)提出的ART 技术,赋予了LLM 透过多步骤过程进行推理并无缝整合外部知识的能力。ART 技术有效地补充了推理的不足,使LLM 能够处理更复杂的问题,远超简单的文本生成。通过整合外部专业知识和计算工具,ART 为LLM 带来了前所未有的多功能性和实用性,使它们能在科学研究、数据分析和决策支持等领域发挥作用。ART 通过结构化程序自动化推理步骤,免除了繁琐的手动设计需求,其动态工具整合能力确保了与外部工具的顺畅协作。在BigBench 和MMLU 这两个挑战性基准的实证测试中,ART 展示了卓越的效果,不仅超越了传统引导技巧,在某些情况下甚至达到了与精心设计的示范相媲美的水平。

在这里插入图片描述

7. Improving Consistency and Coherence

7.1 Contrastive Chain-of-Thought (CCoT) Prompting

传统的CoT 技术,经常漏掉了从错误中学习的重要环节。为解决此,Chia et al. (2023)[7]提出CCoT 技术。这种技术通过同时提供正确与错误的推理示例来引导模型,就像是在探索一张既标示正确路径又指出错误弯道的地图,展现了CCoT 的独到之处。这种双重视角的方法在SQuAD 和COPA 等推理基准测试中得到了验证,促使LLM进行逐步推理,在战略性和数学推理的评估中相比传统CoT 取得了4%到16%的提升。当与self-consistency 结合使用时,性能进一步提升了约5%。然而,这项技术仍面临一些挑战,如如何为不同问题自动生成对比示例,以及其在推理之外的其他自然语言处理任务中的适用性问题。

在这里插入图片描述

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LLMprompt是通过模板定义的,该模板包含用于描述和表示任务输入和输出的占位符。通过prompt,我们可以控制LLM在不同任务上的应用。一个常见的prompt是使用问答形式的提示链,其中包括一个question()提示符用于将输入转换为问题,以及一个answer()提示符用于回答生成的问题。不同的提示链可以导致对输入的不同预测。因此,prompt的设计对于LLM的性能至关重要。 ASK ME ANYTHING PROMPTING (AMA)方法提出了一种简单而有效的方法来设计高质量的prompt。该方法通过产生多个有效的但不完美的prompt,然后将它们聚合起来,最终生成高质量的prompt。 这种方法可以减少开源LLM的参数数量,并取得比GPT3-175B更好的Few-Shot性能。 由于prompt的微小变化可能导致LLM性能的较大变化,因此prompt设计的重要性不容忽视。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [最新 | Ask Me Anything 一种提示(Prompt)语言模型的简单策略(斯坦福大学 & 含源码)](https://blog.csdn.net/yinizhilianlove/article/details/127215208)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值