留给 n8n 的时间不多了?OpenAI Agent Builder 真的要终结低代码吗?

使用 n8n 已经有一段时间了,搭建了各种自动化工作流程:有些简单,有些则相当复杂。但在 OpenAI 宣布推出 AgentKit,尤其是他们的新工具 Agent Builder 之后,我不禁去了解了一下。

最近它引起了很大的轰动,说实话,它看起来可能会颠覆整个自动化领域。在这篇博客中,我将详细介绍 AgentKit 的实际情况,试用 Agent Builder,并看看它与 n8n 相比表现如何。

什么是 AgentKit?

OpenAI 的 AgentKit 是一个新的工具套件,旨在帮助开发人员和团队更顺畅地创建、部署和管理由 AI 驱动的代理(AI-powered agents)。

在此之前,构建代理式工作流程(agentic workflows)意味着需要处理多种工具、编写编排逻辑,并在前端工作上花费太多时间。AgentKit 改变了这一切。它允许您可视化设计工作流程,并能更快地集成由代理驱动的 UI,这得益于它的三个主要组件:

  • Agent Builder: 一个用于创建和版本化多代理工作流程的可视化画布。
  • Connector Registry: 一个集中式管理中心,供管理员管理数据和工具如何在 OpenAI 产品之间连接。
  • ChatKit: 一个工具包,用于将可定制的基于聊天的代理体验直接嵌入到您的产品中。

OpenAI 还在推出新的评估功能,如数据集、追踪分级和自动化提示优化。所有这些都旨在帮助团队更系统地监控和改进代理性能。此外,还支持第三方模型以衡量和提高代理性能。

什么是 Agent Builder?

AgentKit 的核心是 Agent Builder,这是一个可视化画布,您可以通过简单的拖放操作来设计多代理工作流程。它内置了版本控制、实时预览和防护措施(guardrails),以防止错误、数据泄露或不安全行为。

Connector Registry 使您能够轻松地从一个地方管理跨多个工作区和应用程序的数据和集成。而 ChatKit 则处理界面方面的问题,让您可以将对话式代理直接嵌入到您的产品中,而无需处理前端的复杂性。

如何访问 Agent Builder?

要访问 Agent Builder,请遵循以下步骤:

  1. 登录 OpenAI 平台: 在其官方网站上登录您的 OpenAI 账户。
  2. 导航到 Agent Builder: 访问https://platform.openai.com/docs/guides/agent-builder并点击打开 Agent Builder。
  3. 访问 Agent Builder: 进入后,点击“创建工作流程”(Create workflow)。
  4. 开始构建: 使用可视化画布拖放和连接组件,创建您的代理工作流程。

演示示例

我使用 OpenAI 的 Agent Builder 构建了一个自定义代理式工作流程,以便亲身体验创建和部署代理的简便性。

通过这个设置,代理可以通过智能搜索这些文本记录来回答用户的问题。得益于 GPT-5 的推理能力,它能在几秒钟内理解上下文并提供准确、相关的回复。

工作流程如下:

第 1 步:定义代理角色和指令

配置代理的角色,将其设置为一个有用的助手,专门通过利用 YouTube 视频文本记录来回答用户查询。

第 2 步:集成 FileSearchTool 并上传文本

FileSearchTool 添加到工作流程中。

将视频文本记录上传到此工具,从而实现内容内部的上下文感知搜索

第 3 步:预览和测试代理

使用 Agent Builder 的预览功能

在聊天 UI 中,输入与您的视频相关的问题。

根据文本记录,接收准确的、上下文驱动的答案。

这种方法展示了 Agent Builder 拖放设计、内置 AI 编排和无缝工具集成的强大功能,无需大量编码即可创建复杂的代理式工作流程。

完整演示:

Agent Builder 和 AgentKit 的价格

AgentKit 让您可以使用 Agent Builder、ChatKit 和 Evals。计费将于 2025 年 11 月 1 日开始,在此之前不会产生任何费用。存储费用仅适用于 ChatKit 文件和图像上传,每个账户每月有 1 GB 的免费额度。超出后,价格为每 GB-天 $0.10。某些功能始终免费,包括:使用 Agent Builder 进行设计和迭代直到点击“运行”;自托管 ChatKit(您只需支付模型 token 使用费);以及 企业控制 功能,如 SSO、RBAC 和审计日志,这些都无需额外费用。

您可以在 https://openai.com/zh-Hans-CN/api/pricing/ 阅读更多相关信息。

Agent Builder vs n8n

特点n8nAgent Builder
工作流程设计可视化、基于节点的拖放。可视化画布,具备多代理编排和版本控制。
AI 集成有限,依赖外部 API。原生 AI 代理编排 ,具有 GPT-5 驱动的推理能力。
聊天 UI 嵌入需要自定义前端开发。内置 ChatKit ,用于嵌入基于聊天的代理体验。
安全和防护需要手动实施数据隐私和安全。模块化防护措施 ,用于 PII 屏蔽、越狱检测和安全行为。
数据连接器集成广泛,社区构建。通过 Connector Registry 进行管理,集中控制。
评估和监控日志、执行和通过插件进行一些监控。集成评估 功能,具备自动化分级、提示优化和追踪分级。

虽然 n8n 是一个成熟且流行的无代码/低代码自动化平台,拥有数千个集成和强大的社区,但 Agent Builder 采取了独特的 AI 优先方法,它将高级 AI 代理与简化的对话 UI 和内置的防护措施相结合。

Agent Builder 将 AI 优先工作流程、内置聊天 UI 和安全功能结合起来,使其成为一个强大的竞争者,尤其适用于 AI 驱动的自动化场景。而 n8n 仍然是通用自动化的首选。

总结

OpenAI 的 Agent Builder 正在改变我们对 AI 自动化的看法。它的可视化、AI 原生设计、内置安全防护和集成聊天 UI,使得构建智能代理变得异常简单,消除了通常的技术障碍。

另一方面,n8n 仍然作为一个灵活、开源的自动化平台而大放异彩,它拥有庞大的集成库和强大的社区支持。

如果您正在寻求流线型、AI 优先的工作流程和企业级控制,Agent Builder 感觉像是下一个重大进步。但如果灵活性、社区支持和开放的定制性对您更重要,n8n 仍然坚守着自己的阵地。我将很快发布一篇详细的对比文章,深入探讨每个平台的真正优势所在。

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

<think>好的,我现在需要处理用户关于n8n与AI代理集成的查询。首先,用户提到他们参考了Open edX的数据结构文档,但实际问题是关于n8n的AI集成,所以可能需要确认是否有相关的引用或资源,但暂时先忽略引用部分,先专注于n8n本身的信息。 用户的问题有两个部分:了解或使用n8n与AI代理的集成。我需要先确定n8n是否支持AI代理,以及如何集成。根据我之前的知识,n8n是一个工作流自动化工具,支持多种第三方服务的集成,可能包括AI服务如OpenAI、Hugging Face等。 接下来,我需要验证这一点。n8n的官方文档或社区是否有关于AI代理集成的信息?例如,是否存在现成的节点(nodes)如OpenAI、Google AI等,这些可能被用来构建AI代理工作流。此外,用户可能想知道如何具体配置这些集成,比如API密钥的设置、触发器的使用等。 然后,考虑用户可能需要的步骤,例如安装相关节点、配置API、构建工作流示例。需要提供具体的操作指南,比如代码片段或配置步骤,但根据用户的问题,可能不需要代码,而是方法说明。 另外,用户可能想了解应用场景,比如自动化客服、数据分析等,这些需要结合AI功能。需要举一些例子,说明如何利用n8n的AI集成实现这些场景。 还要注意是否需要区分不同的AI服务,例如OpenAI的ChatGPT,Hugging Face的模型,或者自定义AI模型的集成。可能需要分别说明不同的集成方法。 最后,生成相关问题,帮助用户深入探索,比如如何认证、错误处理、优化性能等。确保覆盖用户可能的后续疑问。 现在,整理这些思路,组织成结构化的回答,分步骤说明集成方法、配置步骤、应用场景,并附上相关问题。同时确保使用正确的中文表达,避免技术术语错误,并引用提供的参考链接,虽然原链接是关于Open edX的,但可能用户是误引,所以可能不需要实际引用,但根据系统指令需要在末尾添加引用标识,所以可能需要调整。</think>### n8n与AI代理集成的方法与应用 n8n是一个开源的工作流自动化工具,支持通过预置节点或自定义代码与AI代理(如OpenAI、Hugging Face等)集成。以下是具体实现方式: #### 1. **集成AI服务的核心方法** - **使用预置AI节点** n8n内置了多个AI服务节点,例如: - **OpenAI节点**:支持调用GPT-3、DALL·E等模型生成文本或图像。 - **Hugging Face节点**:可访问其模型库完成翻译、文本分类等任务。 - **Google AI节点**:集成Vertex AI等服务进行预测或数据分析。 - **自定义HTTP请求节点** 若AI服务未提供官方节点,可通过`HTTP Request`节点调用其API。例如,调用自定义模型API的配置示例如下: ```json { "method": "POST", "url": "https://api.example-ai.com/predict", "headers": { "Authorization": "Bearer YOUR_API_KEY" }, "body": { "input": "{{ $json.input_data }}" } } ``` #### 2. **配置步骤** 1. **安装节点** 在n8n编辑器中搜索所需AI节点(如`OpenAI`)并安装。 2. **设置API密钥** 在节点配置页输入AI服务提供的API密钥,例如OpenAI的`sk-xxx`。 3. **定义输入输出** 通过JSON格式映射输入参数(如用户提问)和输出结果(如AI生成的回复)。 #### 3. **典型应用场景** - **自动化客服**:结合AI生成回复,通过Slack或邮件自动发送给用户[^1]。 - **数据分析**:调用AI模型解析日志数据,触发告警或生成报告。 - **内容生成**:批量生成营销文案或社交媒体内容。 #### 4. **调试与优化** - **错误处理**:使用`Error Trigger`节点捕获API调用异常。 - **性能优化**:通过`Wait`节点控制请求频率,避免触发AI服务的速率限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值