一.引言
随着近年来大语言模型的迅猛发展,模型的规模和复杂度也在不断增长。随之而来的是模型参数数量的激增,例如源2.0系列模型从最开始的2B模型不断扩展到51B,乃至102B。这不仅对计算资源提出了更高的要求,也给本地部署带来了前所未有的挑战。在这样的背景下,将模型部署在在线平台成为了一种更加方便快捷的选项。
首先,本地部署大型模型需要强大的硬件支持,包括高性能的CPU/GPU和大量的存储空间。然而,这样的硬件配置往往成本高昂,且不易于维护和升级。相比之下,在线平台提供了弹性的计算资源,用户可以根据需要快速扩展或缩减资源,有效降低了成本和维护难度。
其次,大型模型的训练和推理过程往往需要大量的时间。而在在线平台上部署模型可以利用分布式计算的优势,加速模型的训练和推理过程,显著提高效率。此外,平台还能够提供自动优化和模型微调的功能,进一步提升模型性能。
最后,在线平台往往具备有版本控制和API接口功能,前者使得模型更新更加快捷和方便,一定程度上可以加速开发周期,也提高了模型的迭代速度。后者使得模型可以轻松集成到Web应用、移动应用还是物联网设备等各类应用场景中。
综上所述,将大模型部署到在线平台具有高效、灵活、经济、易上手等多种优点,是未来广大大模型研究者和使用者必须学习的技术方案之一。源大模型目前也以支持多个在线平台,其中包括全面开源的多功能深度学习平台——百度飞桨(PaddlePaddle)。本文将以百度飞桨平台为示例详细介绍源大模型在在线人工智能平台上的部署流程。
二.部署流程
(1)我们首先在浏览器内打开飞桨AI Studio页面,https://aistudio.baidu.com/projectoverview/ 在页面内点击页面右上角处的【创建项目】来创建一个新项目。
(2)我们需要创