引言
在大数据处理场景中,Hive 作为基于 Hadoop 的数据仓库工具,其文件存储格式的选择直接影响数据存储成本、查询性能和系统扩展性。本文将全面解析 Hive 支持的主流文件格式(包括 TextFile、ORC、Parquet 等),通过实际案例对比分析它们的优缺点及适用场景,帮助读者做出最优选择。
一、TextFile:最基础的行式存储格式
格式简介
TextFile 是 Hive 默认的存储格式,采用纯文本行式存储,每行对应一条记录,字段之间通过分隔符(如逗号、制表符)分隔。这种格式与传统关系型数据库的文本导出格式兼容,具有极高的通用性。
核心优点
- 可读性强
可直接通过文本编辑器(如 Notepad++、VI)查看和编辑数据,无需额外解析工具。 - 兼容性好
支持与 Hadoop 生态外的系统(如 MySQL、Excel)直接交互。 - 写入高效
数据写入时无需复杂的序列化 / 反序列化过程。
主要缺点
- 存储效率低
未压缩时体积庞大,例如存储 100 万条用户记录&#