奇数校验电路有四个输入一个输出,其逻辑是当输入端有奇数个信号时,则输出1,否则输出0。本问题的提示是:要检验两路是否为奇数,只需要用到一个逻辑门。回顾之前研究的逻辑门,不难找到XOR异或门唯一满足这样的条件。
第一章的逻辑门搭建思路,德摩根定律等均变成本章的基础,从问题的提示来看发现在算术运算这一章节,我们更强调电路的数字功能。当验证两路是否为奇数时,我们应该想到两路为奇数的情况占所有情况的一半,也就是1:1关系。在输出关系1:1关系的逻辑门中,很快找到XOR满足条件;同时拓展发现,一个信号不是奇数便是偶数,如果我们对XOR的输出取非得到验证两路信号是否为偶的电路,也就是XNOR。
如下图,对四个输入端两两接入XOR,分析两条输出端:输出端输出为1必定意味着两个输入端为奇数,但当AB,CD两路都有一个信号为奇数时,输出两路都会输出为1,当都为偶数时,输出两路都不输出。
因此我们发现当四个输入有奇数个信号时,必定两输出是相异的,(翻译成自然语言意味着,AB和CD任意一组合只能有一个是相异信号,则四个输入ABCD将永远是奇数)因此将两输出继续接到XOR上表示两输出路只能有一路相异,便完成了奇数电路。
搭建奇数校验电路时我们已经感受到逻辑门的数字作用,之前的基础逻辑门依然有其对应的数字作用,本章节需要从数字的角度去重新审视它们。例如对于或门,在理解或逻辑的基础上还应当视为≥1电路,n路与门理解为=n电路。
每个等式或者不等式条件成立时输出为1,否则输出0。以下给出基础逻辑门的全新符号定义: