从逻辑到数字的跳跃——奇偶校验电路

文章讲述了如何使用逻辑门,特别是XOR和XNOR,设计奇数校验电路,利用它们的数字特性来判断输入信号的奇偶性。通过德摩根定律,作者强调了逻辑门在数字电路中的实际应用,如将或门理解为≥1电路,与门理解为=n电路。
摘要由CSDN通过智能技术生成

    奇数校验电路有四个输入一个输出,其逻辑是当输入端有奇数个信号时,则输出1,否则输出0。本问题的提示是:要检验两路是否为奇数,只需要用到一个逻辑门。回顾之前研究的逻辑门,不难找到XOR异或门唯一满足这样的条件。
    第一章的逻辑门搭建思路,德摩根定律等均变成本章的基础,从问题的提示来看发现在算术运算这一章节,我们更强调电路的数字功能。当验证两路是否为奇数时,我们应该想到两路为奇数的情况占所有情况的一半,也就是1:1关系。在输出关系1:1关系的逻辑门中,很快找到XOR满足条件;同时拓展发现,一个信号不是奇数便是偶数,如果我们对XOR的输出取非得到验证两路信号是否为偶的电路,也就是XNOR。
    如下图,对四个输入端两两接入XOR,分析两条输出端:输出端输出为1必定意味着两个输入端为奇数,但当AB,CD两路都有一个信号为奇数时,输出两路都会输出为1,当都为偶数时,输出两路都不输出。

56767c5699894e839b8d478946ccf0d9.png 

    因此我们发现当四个输入有奇数个信号时,必定两输出是相异的,(翻译成自然语言意味着,AB和CD任意一组合只能有一个是相异信号,则四个输入ABCD将永远是奇数)因此将两输出继续接到XOR上表示两输出路只能有一路相异,便完成了奇数电路。

ec7dec7ce7634d789efd953706b8726c.png 

    搭建奇数校验电路时我们已经感受到逻辑门的数字作用,之前的基础逻辑门依然有其对应的数字作用,本章节需要从数字的角度去重新审视它们。例如对于或门,在理解或逻辑的基础上还应当视为≥1电路,n路与门理解为=n电路。
    每个等式或者不等式条件成立时输出为1,否则输出0。以下给出基础逻辑门的全新符号定义:

cdbc96b180ac488fa28f201d8a32c46b.png

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值