国产斑马鱼专用实验设备重大突破 环特生物引领全球开创斑马鱼研究新范式

近日,我国生物技术领域迎来标志性突破——环特生物与分析测试百科网联合举办"2025斑马鱼实验专用设备全球首发品鉴会",正式推出自主研发的四大核心设备系统,标志着我国在斑马鱼实验设备领域实现历史性跨越。此次发布的斑马鱼高通量2D行为分析系统、成/幼鱼3D行为分析系统、360全景成像系统及智能化养殖系统,以"高通量×AI"技术融合创新,填补了国际斑马鱼专用设备的多项技术空白。

作为国家"十四五"生物经济发展规划重点支持领域,高端科研设备的自主可控事关国家生物科技战略安全。环特生物实验室建设与运营事业部负责人金义超在发布会上表示,此次推出的设备体系历经20年技术积淀,突破了多项关键技术瓶颈,其中3D行为建模算法、全景动态追踪技术等核心指标达到国际领先水平。

在国产化替代进程加速的背景下,此次发布的设备体系展现出显著竞争优势。据研发数据显示,新型高通量系统数据处理效率较传统设备提升520%,AI辅助分析准确率突破98.5%,单位实验成本降低40%以上。尤为值得关注的是,全球首创的360度全景成像系统攻克了针对斑马鱼的多维立体观测难题,为神经系统疾病、遗传病等重大疾病研究提供了革命性工具。

厚新健投行业分析师Joanne Cheng分析指出,该系列设备的产业化将产生显著社会效益:预计每年可为国内科研机构节约设备采购成本超2亿元,推动我国斑马鱼模型相关论文产出增长30%以上。更重要的是,其模块化设计为构建自主可控的生物医药研发技术体系提供了关键基础设施。

当前,我国生物医药产业正处于创新转型关键期。环特生物此次技术突破,不仅为药物筛选、毒理评价、疾病建模等研究提供了“中国方案”,更通过设备-数据-算法的全链条创新,构建起生物医药研发的新型基础设施。随着设备体系的推广应用,将有力支撑我国在发育生物学、遗传学、基础医学、药理学和毒理学等领域的原始创新,为健康中国战略实施注入强劲科技动能。

环特生物表示,将持续深化"产学研用"协同创新,力争三年内实现我国斑马鱼实验室设备国产化率突破80%,助力我国生命科学研究迈向智能实验新时代。

### 回答1: 好的,这里是 20 个深度学习模型用于姿态估计的推荐: 1. 2D/3D Convolutional Neural Networks 2. Recurrent Neural Networks 3. Self-supervised Learning 4. Generative Adversarial Networks 5. Attention-based Networks 6. Graph Neural Networks 7. Multi-view Networks 8. Convolutional Pose Machines 9. End-to-end Learning 10. Hybrid Networks 11. Part-based Networks 12. Deformable Part Models 13. Dense Regression Networks 14. Spatial Transformer Networks 15. Adversarial Training 16. Deep Reinforcement Learning 17. Generative Models 18. Transfer Learning 19. Domain Adaptation 20. Few-shot Learning ### 回答2: 姿态估计是计算机视觉领域中的重要任务,它涉及到对人体或者物体在图像或者视频中的关键点进行定位和跟踪。下面是其中一些比较常用的姿态估计深度学习模型: 1. Hourglass:采用自顶向下的多尺度处理方式,通过逐步下采样和上采样来逼近姿态关键点。 2. OpenPose:结合了卷积神经网络和图像处理技术,能够同时估计多个人体关键点。 3. AlphaPose:使用融合的深度回归网络和判别式模型,能够准确预测人体关键点。 4. CPN(Convolutional Pose Machines):通过堆叠多个卷积网络来逐步提炼姿态特征,从而实现关键点的准确定位。 5. Squeeze-and-Excitation Network:采用通道注意力机制,能够自适应地提取姿态特征。 6. HRNet(High-Resolution Network):通过同时利用高分辨率和多尺度特征进行姿态估计,能够提升准确性。 7. PoseNet:借鉴了图像特征和姿态信息之间的关系建立一个深度神经网络模型。 8. SPPE(Simple Pose Part Estimation):通过训练两个子网络,一个进行关键点热图预测,一个用于姿态矩阵估计。 9. ResNet:利用残差连接来构建深度卷积神经网络,适用于姿态估计任务。 10. Stacked Hourglass Attention Network:利用注意力机制来指导姿态关键点的预测。 11. Integral Human Pose Regression:通过估计关键点的密集度矩阵来提高姿态估计的精度。 12. Natural Language Pose Estimation:结合自然语言处理技术,实现对图像或视频中的姿态进行描述和预测。 13. LSTM Pose Machines:利用长短期记忆网络,实现对时间序列中姿态的预测。 14. CPM+OHPM(Orphan Hourglass Pose Machine):结合主干卷积网络和分支网络,能够同时估计多个关键点。 15. DensePose:将姿态估计任务转化为像素到三维点的映射问题,实现密集而准确的姿态估计。 16. PAF(Part Association Fields):通过学习连接人体关键点的概率热图,实现对复杂姿态的估计。 17. Cascaded Pyramid Network:通过级联的金字塔结构,逐步提取姿态特征并进行联合估计。 18. Realtime Multi-Person 2D Pose Estimation:实现实时多人姿态估计,通过基于相机中心和深度优化的关键点匹配算法提高准确性。 19. DeepPose:采用深层卷积神经网络,通过端到端的训练实现姿态估计。 20. Deformable Part Models:结合深度学习和非刚性图像变换技术,实现对非刚性物体(如人体)姿态的估计。 ### 回答3: 推荐以下20个姿态估计深度学习模型: 1. OpenPose:使用卷积神经网络进行多人姿态估计。 2. AlphaPose:基于实时多人姿态估计的开源系统。 3. PoseNet:使用卷积神经网络进行单人姿态估计。 4. HRNet:使用高分辨率表示网络进行姿态估计,具有较高的准确度。 5. SimplePose:使用特征金字塔网络进行单人姿态估计。 6. CPN:使用循环多尺度特征金字塔网络进行多人姿态估计。 7. DensePose:基于Mask R-CNN的姿态估计框架,能够推断出人体的密集表面网格。 8. SPPE:基于Spatial Pyramid and Graph Parsing Engine的姿态估计模型,能够进行多人姿态估计。 9. Stacked Hourglass Network:使用堆叠的Hourglass网络进行姿态估计,具有较高的准确度。 10. Integral Human Pose Regression:使用全卷积网络进行单人姿态估计。 11. HMR:使用循环神经网络进行人体姿态和形状估计。 12. VisualSFM:使用结构光扫描和特征提取进行姿态估计。 13. PoseTrack:用于多人姿态估计和追踪的数据集和基准。 14. RMPE:基于循环网络的多人姿态估计模型,具有较高的鲁棒性。 15. Cascaded Pyramid Network:使用金字塔形状网络进行多人姿态估计的模型。 16. MultiPoseNet:基于多任务学习的多人姿态估计模型。 17. CPN-RNN:在CPN的基础上引入循环神经网络,提高姿态估计的准确度。 18. RMPE+SDN:RMPE在姿态估计任务上引入了空间注意力模块。 19. Convolutional Pose Machines:使用卷积神经网络进行姿态估计的模型。 20. Mask R-CNN:用于实例分割和人体姿态估计的深度学习模型。 以上是一些常见的姿态估计深度学习模型,可以根据具体需求选择适合的模型进行姿态估计
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值