感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
token = ‘Your token’ # 输入你的接口密匙,获取方式及相关权限见Tushare官网。
pro = ts.pro_api(token)
df = pro.daily(ts_code=‘603993.SH’) # daily为tushare的股票数据接口。
将获取到的DataFrame数据进行标准化处理,转换为方便自己使用的一种规范格式。
df = df.loc[:, [‘trade_date’, ‘open’, ‘high’, ‘low’, ‘close’, ‘vol’]]
df.rename(
columns={
‘trade_date’: ‘Date’, ‘open’: ‘Open’,
‘high’: ‘High’, ‘low’: ‘Low’,
‘close’: ‘Close’, ‘vol’: ‘Volume’},
inplace=True) # 重定义列名,方便统一规范操作。
df[‘Date’] = pd.to_datetime(df[‘Date’]) # 转换日期列的格式,便于作图
df.set_index([‘Date’], inplace=True) # 将日期列作为行索引
df = df.sort_index() # 倒序,因为Tushare的数据是最近的交易日数据显示在DataFrame上方,倒序后方能保证作图时X轴从左到右时间序列递增。
==============================================================================
股市行情充满随机性,往往是“横看成岭侧成峰,远近高低各不同”。一次上涨或下跌是短期的波动,还是已经到来的大势,很难判断。通道模型适度地解决了这一难题,它利用过去的价格信息,绘制出了上下两条通道线(上轨,下轨),以此设定股价的相对高低界限。通道线可以包容市场波动行情的部分信息,过滤震荡行情中均线系统“假”突破信号。通道线除了涵盖市场价格高低信息以外,两条通道线的距离也体现了股票价格的震荡幅度。当价格波动幅度较小时,通道的宽度较小,当价格震荡较大时,通道线的宽度也相应变大。通道突破模型将价格高低与价格震荡幅度融合在一起,成为判断市场中长期趋势的常用技术分析指标。
===============================================================================================
唐奇安通道流行于上世纪七十年代,由著名海龟交易员Richard Donchian发明,最早用于日内交易,其主要思想是寻找一定时间内(如20日)出现的最高价和最低价,将最高价和最低价分布作为通道的上下轨道,当价格突破上轨道时,说明股价运动较强势,释放出买入信号;当价格线向下突破下轨道的时候,空方市场较为强势,市场下跌趋势较为明显,则释放出卖出信号。
唐奇安通道由三条轨道线构成:
-
通道上界 = 过去20日内的最高价
-
通道下界 = 过去20日内的最低价
-
中轨道 = 通 道 上 界 + 通 道 下 界 2 \displaystyle {\frac{通道上界 + 通道下界}{2} } 2通道上界+通道下界
绘图代码示例:
提取收盘价,最高价,最低价数据
Close = df.Close