网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
图神经网络( GNNs )凭借其强大的处理实际应用中广泛存在的图数据的能力,受到了广泛的研究关注。然而,随着社会越来越关注数据隐私,GNNs面临着适应这种新常态的需要。这导致了近年来联邦图神经网络( FedGNNs )研究的快速发展。虽然前景广阔,但这一跨学科领域感兴趣的研究者来说是极具挑战性的。对这一领域缺乏深入的调查只会加剧这一问题。在本文中,我们通过提供对这一新兴领域的全面调查来弥补这一差距。我们对FedGNNs文献提出了一个独特的3层分类法,以提供对GNNs如何在联邦学习( Federation Learning,FL )背景下工作的清晰视图。通过分析图数据在FL设置中的表现形式,不同FL系统架构和图数据跨数据仓重叠程度下如何进行GNN训练,以及不同FL设置下如何进行GNN聚合,对现有工作进行了展望。通过讨论现有工作的优势和局限性,我们展望了未来的研究方向,这些方向可以帮助构建更健壮、更动态、更高效和更易于解释的联邦图神经网络。
论文内容与结构
1. Introduction
首先,引出图神经网络是处理图结构数据的强大工具,以及它的广泛应用。
图神经网络( GNN )是处理图结构数据的强大工具。图结构数据是由图拓扑连接的数据样本。例如,分子数据是以原子作为图中的节点,以连接它们的键作为图中的边的图结构数据。GNNs可以通过考虑从底层图拓扑中提取的邻域信息来提高节点嵌入的质量。它们已被广泛用于各种应用