先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
⋯
a
n
a_1,a_2\cdots a_n
a1,a2⋯an 为各个输入的分量
- w
1
,
w
2
⋯
w
n
w_1,w_2 \cdots w_n
w1,w2⋯wn 为各个输入分量对应的权重参数
- b
b
b 为偏置
- f
f
f 为激活函数,常见的激活函数有tanh,sigmoid,relu
- t
t
t 为神经元的输出
使用数学公式表示就是:
t
=
f
(
W
T
A
b
)
t = f(W^TA+b)
t=f(WTA+b)
可见,一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。
1943 年,McCulloch 和 Pitts 将上述情形抽象为上图所示的简单模型,这就是一直沿用至今的 M-P 神经元模型。把许多这样的神经元按照一定的层次结构连接起来,就得到了神经网络。
2 神经网络的种类
2.1 单层神经网络
单层神经网络是最基本的神经元网络形式,由有限个神经元构成,所有神经元的输入向量都是同一个向量。由于每一个神经元都会产生一个标量结果,所以单层神经元的输出是一个向量,向量的维数等于神经元的数目。
示意图如下:
2.2 感知机
感知机由两层神经网络组成,输入层接收外界输入信号后传递给输出层(输出+1正例,-1反例),输出层是 M-P 神经元。
感知机的作用:
把一个n维向量空间用一个超平面分割成两部分,给定一个输入向量,超平面可以判断出这个向量位于超平面的哪一边,得到输入时正类或者是反类,对应到2维空间就是一条直线把一个平面分为两个部分。(简单的二分类模型,给定阈值,判断数据属于哪一部分)
超平面:是指n维线性空间中维度为n-1的子空间。它可以把线性空间分割成不相交的两部分。比如二维空间中,一条直线是一维的,它把平面分成了两块;三维空间中,一个平面是二维的,它把空间分成了两块
2.3 多层神经网络
多层神经网络就是由单层神经网络进行叠加之后得到的,所以就形成了 层 的概念,常见的多层神经网络有如下结构:
- 输入层(Input layer),众多神经元(Neuron)接受大量输入消息。输入的消息称为输入向量。
- 输出层(Output layer),消息在神经元链接中传输、分析、权衡,形成输出结果。输出的消息称为输出向量。
- 隐藏层(Hidden layer),简称“隐层”,是输入层和输出层之间众多神经元和链接组成的各个层面。隐层可以有一层或多层。隐层的节点(神经元)数目不定,但数目越多神经网络的非线性越显著,从而神经网络的强健性(robustness)更显著。
利用神经元来构建神经网络,相邻层之间的神经元相互连接,并给每一个连接分配一个强度,如下图所示:
特点是:
- 神经网络中信息只向一个方向移动,即从输入节点向前移动,通过隐藏节点,再向输出节点移动,网络中没有循环或者环。
- 同一层的神经元之间没有连接
- 每个连接都有一个权值
- 第 N 层的每个神经元和第 N-1 层的所有神经元相连(这就是full connected的含义),第 N-1 层神经元的输出就是第 N 层神经元的输入
- 所谓的全连接层就是在前一层的输出的基础上进行一次
Y
=
W
x
b
Y=Wx+b
Y=Wx+b的变化(不考虑激活函数的情况下就是一次线性变化,所谓线性变化就是平移(+b)和缩放的组合(*w))
3 神经元的工作方式
人工神经元接收到一个或多个输入,对他们进行加权并相加,总和通过一个非线性函数(激活函数)产生输出。
- 所有的输入xi,与相应的权重 wi 相乘并求和
- 将求和结果送入到激活函数中,得到最终的输出结果:
3.1 激活函数
激活函数的作用
在前面的神经元的介绍过程中我们提到了激活函数,那么它到底是干什么的呢?
假设我们有这样一组数据,三角形和四边形,需要把他们分为两类
通过不带激活函数的感知机模型我们可以划出一条线, 把平面分割开
假设我们确定了参数 w 和 b 之后,那么带入需要预测的数据,如果 y>0,我们认为这个点在直线的右边,也就是正类(三角形),否则是在左边(四边形)
但是可以看出,三角形和四边形是没有办法通过直线分开的,那么这个时候该怎么办?
可以考虑使用多层神经网络来进行尝试,比如在前面的感知机模型中再增加一层,如下图:
对上图中的等式进行合并,我们可以得到:
y
=
(
w
1
−
11
w
2
−
1
⋯
)
x
1
(
w
1
−
21
w
2
−
1
⋯
)
x
2
(
w
2
−
1
⋯
)
b
1
−
1
y = (w_{1-11}w_{2-1}+\cdots)x_1+(w_{1-21}w_{2-1}+\cdots)x_2 + (w_{2-1}+\cdots)b_{1-1}
y=(w1−11w2−1+⋯)x1+(w1−21w2−1+⋯)x2+(w2−1+⋯)b1−1
上式括号中的都为w参数,和公式
y
=
w
1
x
1
w
2
x
2
b
y = w_1x_1 + w_2x_2 +b
y=w1x1+w2x2+b完全相同,依然只能够绘制出直线。但是可以发现,即使是多层神经网络,相比于前面的感知机,没有任何的改进。
但是如果此时,我们在前面感知机的基础上加上非线性的激活函数之后,输出的结果就不在是一条直线
如上图,右边是 sigmoid 函数,对感知机的结果,通过 sigmoid 函数进行处理
如果给定合适的参数 w 和 b,就可以得到合适的曲线,能够完成对最开始问题的非线性分割
所以激活函数很重要的一个作用就是增加模型的非线性分割能力
在神经元中引入了 激活函数 ,它的本质是向神经网络中引入 非线性因素的,通过激活函数,神经网络就可以拟合各种曲线。如果不用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合,引入非线性函数作为激活函数,那输出不再是输入的线性组合,可以逼近任意函数。
激活函数的种类
(1)Sigmoid / logistics 函数
数学表达式:
曲线图像:
sigmoid 在定义域内处处可导,且两侧导数逐渐趋近于0。如果X的值很大或者很小的时候,那么函数的梯度(函数的斜率)会非常小,在反向传播的过程中,导致了向低层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为 梯度消失 。
一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以 0 为中心的(是以 0.5 为中心的),所以在实践中这种激活函数使用的很少。
sigmoid函数一般只用于 二分类 的输出层。
实现方法:
# 导入相应的工具包
import tensorflow as tf
import tensorflow.keras as keras
import matplotlib.pyplot as plt
import numpy as np
# 定义x的取值范围
x = np.linspace(-10, 10, 100)
# 直接使用tensorflow实现
y = tf.nn.sigmoid(x)
# 绘图
plt.plot(x,y)
plt.grid()
(2)tanh(双曲正切曲线)
数学表达式:
曲线图像:
tanh 也是一种非常常见的激活函数。与 sigmoid 相比,它是以 0 为中心的,使得其收敛速度要比 sigmoid 快(相比之下,tanh 曲线更为陡峭一些),减少迭代次数。然而,从图中可以看出,tanh 两侧的导数也为 0,同样会造成梯度消失。
若使用时可在隐藏层使用 tanh 函数,在输出层使用 sigmoid 函数。
实现方法:
# 导入相应的工具包
import tensorflow as tf
import tensorflow.keras as keras
import matplotlib.pyplot as plt
import numpy as np
# 定义x的取值范围
x = np.linspace(-10, 10, 100)
# 直接使用tensorflow实现
y = tf.nn.tanh(x)
# 绘图
plt.plot(x,y)
plt.grid()
(3)RELU
数学表达式为:
曲线如下图所示:
ReLU是目前最常用的激活函数。 从图中可以看到,当x<0时,ReLU导数为0,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。然而,随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。这种现象被称为“神经元死亡”。
Relu是输入只能大于0,如果你输入含有负数,Relu就不适合,如果你的输入是图片格式,Relu就挺常用的,因为图片的像素值作为输入时取值为[0,255]。
与sigmoid相比,RELU的优势是:
- 采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多。
- sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。
- Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。
实现方法为:
# 导入相应的工具包
import tensorflow as tf
import tensorflow.keras as keras
import matplotlib.pyplot as plt
import numpy as np
# 定义x的取值范围
x = np.linspace(-10, 10, 100)
# 直接使用tensorflow实现
y = tf.nn.relu(x)
# 绘图
plt.plot(x,y)
plt.grid()
(4)LeakyReLu
该激活函数是对RELU的改进,数学表达式为:
曲线如下所示:
实现方法为:
# 导入相应的工具包
import tensorflow as tf
import tensorflow.keras as keras
import matplotlib.pyplot as plt
import numpy as np
# 定义x的取值范围
x = np.linspace(-10, 10, 100)
# 直接使用tensorflow实现
y = tf.nn.leaky_relu(x)
# 绘图
plt.plot(x,y)
plt.grid()
(5)SoftMax
softmax用于多分类过程中,它是二分类函数 sigmoid 在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。
数学表达式为:
使用方法:
softmax 直白来说就是将网络输出的 logits 通过softmax函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)接点,作为我们的预测目标类别。
实现方法:
# 导入相应的工具包
import tensorflow as tf
import tensorflow.keras as keras
import matplotlib.pyplot as plt
import numpy as np
# 数字中的score
x = tf.constant([0.2,0.02,0.15,0.15,1.3,0.5,0.06,1.1,0.05,3.75])
# 将其送入到softmax中计算分类结果
y = tf.nn.softmax(x)
# 将结果进行打印
print(y)
分类结果为:
tf.Tensor(
[0.0212338 0.01773596 0.02019821 0.02019821 0.06378984 0.02866262
0.01845977 0.0522267 0.0182761 0.73921883], shape=(10,), dtype=float32)
(6)其他激活函数
如何选择激活函数?
- 隐藏层
- 优先选择RELU激活函数
- 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
中的score
x = tf.constant([0.2,0.02,0.15,0.15,1.3,0.5,0.06,1.1,0.05,3.75])
将其送入到softmax中计算分类结果
y = tf.nn.softmax(x)
将结果进行打印
print(y)
分类结果为:
tf.Tensor(
[0.0212338 0.01773596 0.02019821 0.02019821 0.06378984 0.02866262
0.01845977 0.0522267 0.0182761 0.73921883], shape=(10,), dtype=float32)
(6)其他激活函数
![在这里插入图片描述](https://i-blog.csdnimg.cn/blog_migrate/692f673415a9f7586bd120778e1ea6c0.png)
**如何选择激活函数?**
* 隐藏层
+ 优先选择RELU激活函数
+ 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
[外链图片转存中...(img-vFxhgXO7-1713415007131)]
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**