Python可视化分析《雪中悍刀行》(2),2024年最新Python岗

data1 = [str(row[1])[0:2] for row in reader]

print(data1)

print(type(data1))

#先变成集合得到seq中的所有元素,避免重复遍历

set_seq = set(data1)

rst = []

for item in set_seq:

rst.append((item,data1.count(item))) #添加元素及出现个数

rst.sort()

print(type(rst))

print(rst)

with open(“time2.csv”, “w+”, newline=‘’, encoding=‘utf-8’) as f:

writer = csv.writer(f, delimiter=‘,’)

for i in rst: # 对于每一行的,将这一行的每个元素分别写在对应的列中

writer.writerow(i)

with open(‘time2.csv’) as csvfile:

reader = csv.reader(csvfile)

x = [str(row[0]) for row in reader]

print(x)

with open(‘time2.csv’) as csvfile:

reader = csv.reader(csvfile)

y1 = [float(row[1]) for row in reader]

print(y1)

4. 统计最近评论数

py1.py

coding=gbk

import csv

from pyecharts import options as opts

from sympy.combinatorics import Subset

from wordcloud import WordCloud

with open(‘…/Spiders/data.csv’) as csvfile:

reader = csv.reader(csvfile)

data1 = [str(row[0]) for row in reader]

#print(data1)

print(type(data1))

#先变成集合得到seq中的所有元素,避免重复遍历

set_seq = set(data1)

rst = []

for item in set_seq:

rst.append((item,data1.count(item))) #添加元素及出现个数

rst.sort()

print(type(rst))

print(rst)

with open(“time1.csv”, “w+”, newline=‘’, encoding=‘utf-8’) as f:

writer = csv.writer(f, delimiter=‘,’)

for i in rst: # 对于每一行的,将这一行的每个元素分别写在对应的列中

writer.writerow(i)

with open(‘time1.csv’) as csvfile:

reader = csv.reader(csvfile)

x = [str(row[0]) for row in reader]

print(x)

with open(‘time1.csv’) as csvfile:

reader = csv.reader(csvfile)

y1 = [float(row[1]) for row in reader]

print(y1)

三. 数据分析


数据分析方面:涉及到了词云图,条形,折线,饼图,后三者是对评论时间与主演占比的分析,然而腾讯的评论时间是以时间戳的形式显示,所以要进行转换,再去统计出现次数,最后,新加了对评论内容的情感分析。

1. 制作词云图

wc.py

import numpy as np

import re

import jieba

from wordcloud import WordCloud

from matplotlib import pyplot as plt

from PIL import Image

上面的包自己安装,不会的就百度

f = open(‘content.txt’, ‘r’, encoding=‘utf-8’) # 这是数据源,也就是想生成词云的数据

txt = f.read() # 读取文件

f.close() # 关闭文件,其实用with就好,但是懒得改了

如果是文章的话,需要用到jieba分词,分完之后也可以自己处理下再生成词云

newtxt = re.sub(“[A-Za-z0-9!%[],\。]”, “”, txt)

print(newtxt)

words = jieba.lcut(newtxt)

img = Image.open(r’wc.jpg’) # 想要搞得形状

img_array = np.array(img)

相关配置,里面这个collocations配置可以避免重复

wordcloud = WordCloud(

background_color=“white”,

width=1080,

height=960,

font_path=“…/文悦新青年.otf”,

max_words=150,

scale=10,#清晰度

max_font_size=100,

mask=img_array,

collocations=False).generate(newtxt)

plt.imshow(wordcloud)

plt.axis(‘off’)

plt.show()

wordcloud.to_file(‘wc.png’)

轮廓图:wc.jpg

图片

词云图:result.png (注:这里把英文字母过滤掉)

图片

2. 制作最近评论数条形图

DrawBar.py

encoding: utf-8

import csv

import pyecharts.options as opts

from pyecharts.charts import Bar

from pyecharts.globals import ThemeType

class DrawBar(object):

“”“绘制柱形图类”“”

def init(self):

“”“创建柱状图实例,并设置宽高和风格”“”

self.bar = Bar(init_opts=opts.InitOpts(width=‘1500px’, height=‘700px’, theme=ThemeType.LIGHT))

def add_x(self):

“”“为图形添加X轴数据”“”

with open(‘time1.csv’) as csvfile:

reader = csv.reader(csvfile)

x = [str(row[0]) for row in reader]

print(x)

self.bar.add_xaxis(

xaxis_data=x,

)

def add_y(self):

with open(‘time1.csv’) as csvfile:

reader = csv.reader(csvfile)

y1 = [float(row[1]) for row in reader]

print(y1)

“”“为图形添加Y轴数据,可添加多条”“”

self.bar.add_yaxis( # 第一个Y轴数据

series_name=“评论数”, # Y轴数据名称

y_axis=y1, # Y轴数据

label_opts=opts.LabelOpts(is_show=True,color=“black”), # 设置标签

bar_max_width=‘100px’, # 设置柱子最大宽度

)

def set_global(self):

“”“设置图形的全局属性”“”

#self.bar(width=2000,height=1000)

self.bar.set_global_opts(

title_opts=opts.TitleOpts( # 设置标题

title=‘雪中悍刀行近日评论统计’,title_textstyle_opts=opts.TextStyleOpts(font_size=35)

),

tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的东西)

is_show=True, # 是否显示提示框

trigger=“axis”, # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息)

axis_pointer_type=“cross”# 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全)

),

toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具)

)

def draw(self):

“”“绘制图形”“”

self.add_x()

self.add_y()

self.set_global()

self.bar.render(‘…/Html/DrawBar.html’) # 将图绘制到 test.html 文件内,可在浏览器打开

def run(self):

“”“执行函数”“”

self.draw()

if name == ‘main’:

app = DrawBar()

app.run()

效果图:DrawBar.html

图片

3. 制作每小时评论条形图

DrawBar2.py

encoding: utf-8

encoding: utf-8

import csv

import pyecharts.options as opts

from pyecharts.charts import Bar

from pyecharts.globals import ThemeType

class DrawBar(object):

“”“绘制柱形图类”“”

def init(self):

“”“创建柱状图实例,并设置宽高和风格”“”

self.bar = Bar(init_opts=opts.InitOpts(width=‘1500px’, height=‘700px’, theme=ThemeType.MACARONS))

def add_x(self):

“”“为图形添加X轴数据”“”

str_name1 = ‘点’

with open(‘time2.csv’) as csvfile:

reader = csv.reader(csvfile)

x = [str(row[0] + str_name1) for row in reader]

print(x)

self.bar.add_xaxis(

xaxis_data=x

)

def add_y(self):

with open(‘time2.csv’) as csvfile:

reader = csv.reader(csvfile)

y1 = [int(row[1]) for row in reader]

print(y1)

“”“为图形添加Y轴数据,可添加多条”“”

self.bar.add_yaxis( # 第一个Y轴数据

series_name=“评论数”, # Y轴数据名称

y_axis=y1, # Y轴数据

label_opts=opts.LabelOpts(is_show=False), # 设置标签

bar_max_width=‘50px’, # 设置柱子最大宽度

)

def set_global(self):

“”“设置图形的全局属性”“”

#self.bar(width=2000,height=1000)

self.bar.set_global_opts(

title_opts=opts.TitleOpts( # 设置标题

title=‘雪中悍刀行各时间段评论统计’,title_textstyle_opts=opts.TextStyleOpts(font_size=35)

),

tooltip_opts=opts.TooltipOpts( # 提示框配置项(鼠标移到图形上时显示的东西)

is_show=True, # 是否显示提示框

trigger=“axis”, # 触发类型(axis坐标轴触发,鼠标移到时会有一条垂直于X轴的实线跟随鼠标移动,并显示提示信息)

axis_pointer_type=“cross”# 指示器类型(cross将会生成两条分别垂直于X轴和Y轴的虚线,不启用trigger才会显示完全)

),

toolbox_opts=opts.ToolboxOpts(), # 工具箱配置项(什么都不填默认开启所有工具)

)

def draw(self):

“”“绘制图形”“”

self.add_x()

self.add_y()

self.set_global()

self.bar.render(‘…/Html/DrawBar2.html’) # 将图绘制到 test.html 文件内,可在浏览器打开

def run(self):

“”“执行函数”“”

self.draw()

if name == ‘main’:

app = DrawBar()

app.run()

效果图:DrawBar2.html

图片

4. 制作近日评论数饼图

pie_pyecharts.py

import csv

from pyecharts import options as opts

from pyecharts.charts import Pie

from random import randint

from pyecharts.globals import ThemeType

with open(‘time1.csv’) as csvfile:

reader = csv.reader(csvfile)

x = [str(row[0]) for row in reader]

print(x)

with open(‘time1.csv’) as csvfile:

reader = csv.reader(csvfile)

y1 = [float(row[1]) for row in reader]

print(y1)

num = y1

lab = x

(

Pie(init_opts=opts.InitOpts(width=‘1700px’,height=‘450px’,theme=ThemeType.LIGHT))#默认900,600

.set_global_opts(

title_opts=opts.TitleOpts(title=“雪中悍刀行近日评论统计”,

title_textstyle_opts=opts.TextStyleOpts(font_size=27)),legend_opts=opts.LegendOpts(

pos_top=“10%”, pos_left=“1%”,# 图例位置调整

),)

.add(series_name=‘’,center=[280, 270], data_pair=[(j, i) for i, j in zip(num, lab)])#饼图

.add(series_name=‘’,center=[845, 270],data_pair=[(j,i) for i,j in zip(num,lab)],radius=[‘40%’,‘75%’])#环图

.add(series_name=‘’, center=[1380, 270],data_pair=[(j, i) for i, j in zip(num, lab)], rosetype=‘radius’)#南丁格尔图

).render(‘pie_pyecharts.html’)

效果图

图片

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

76175617e0048f79437bd30465479.png)

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-z2tDUCCy-1712702776779)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值