2024年最新PyTorch ResNet 实现图片分类_return torch(1),满满干货

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

        # 获取结果
        output = model(x)

        # 预测结果
        pred = output.argmax(dim=1, keepdim=True)

        # 计算准确个数
        correct += pred.eq(y.view_as(pred)).sum().item()

# 计算准确率
accuracy = correct / len(test_loader.dataset) * 100

# 输出准确
print("Test Accuracy: {}%".format(accuracy))

## 完整代码


![在这里插入图片描述](https://img-blog.csdnimg.cn/20210701135832659.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NjI3NDE2OA==,size_16,color_FFFFFF,t_70#pic_center)


完整代码:



import torch
import torchvision
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchsummary import summary

class BasicBlock(torch.nn.Module):
“”“残差块”“”

def __init__(self, inplanes, planes, stride=1):
    """初始化"""

    super(BasicBlock, self).__init__()

    self.conv1 = torch.nn.Conv2d(in_channels=inplanes, out_channels=planes, kernel_size=(3, 3),
                                 stride=(stride, stride), padding=1)  # 卷积层1
    self.bn1 = torch.nn.BatchNorm2d(planes)  # 标准化层1


    self.conv2 = torch.nn.Conv2d(in_channels=planes, out_channels=planes, kernel_size=(3, 3), padding=1)  # 卷积层2
    self.bn2 = torch.nn.BatchNorm2d(planes)  # 标准化层2

    # 如果步长不为1, 用1*1的卷积实现下采样
    if stride != 1:
        self.downsample = torch.nn.Sequential(
            # 下采样
            torch.nn.Conv2d(in_channels=inplanes, out_channels=planes, kernel_size=(1, 1), stride=(stride, stride)))
    else:
        self.downsample = lambda x: x  # 返回x

def forward(self, input):
    """前向传播"""
    out = self.conv1(input)
    out = self.bn1(out)
    out = F.relu(out)

    out = self.conv2(out)
    out = self.bn2(out)

    identity = self.downsample(input)
    output = torch.add(out, identity)
    output = F.relu(output)

    return output

ResNet_18 = torch.nn.Sequential(
# 初始层
torch.nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1)), # 卷积
torch.nn.BatchNorm2d(64),
torch.nn.ReLU(),
torch.nn.MaxPool2d((2, 2)), # 池化

# 8个block(每个为两层)
BasicBlock(64, 64, stride=1),
BasicBlock(64, 64, stride=1),
BasicBlock(64, 128, stride=2),
BasicBlock(128, 128, stride=1),
BasicBlock(128, 256, stride=2),
BasicBlock(256, 256, stride=1),
BasicBlock(256, 512, stride=2),
BasicBlock(512, 512, stride=1),
torch.nn.AvgPool2d(2),  # 池化

torch.nn.Flatten(),  # 平铺层

# 全连接层
torch.nn.Linear(512, 100)  # 100类

)

定义超参数

batch_size = 1024 # 一次训练的样本数目
learning_rate = 0.0001 # 学习率
iteration_num = 20 # 迭代次数
network = ResNet_18
optimizer = torch.optim.Adam(network.parameters(), lr=learning_rate) # 优化器

GPU 加速

use_cuda = torch.cuda.is_available()

if use_cuda:
network.cuda()
print(“是否使用 GPU 加速:”, use_cuda)
print(summary(network, (3, 32, 32)))

def get_data():
“”“获取数据”“”

# 获取测试集
train = torchvision.datasets.CIFAR100(root="./data", train=True, download=True,
                                   transform=torchvision.transforms.Compose([
                                       torchvision.transforms.ToTensor(),  # 转换成张量
                                       torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                   ]))
train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集

# 获取测试集
test = torchvision.datasets.CIFAR100(root="./data", train=False, download=True,
                                  transform=torchvision.transforms.Compose([
                                      torchvision.transforms.ToTensor(),  # 转换成张量
                                      torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                  ]))
test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练

# 返回分割好的训练集和测试集
return train_loader, test_loader

def train(model, epoch, train_loader):
“”“训练”“”

# 训练模式
model.train()

# 迭代
for step, (x, y) in enumerate(train_loader):
    # 加速
    if use_cuda:
        model = model.cuda()
        x, y = x.cuda(), y.cuda()

    # 梯度清零
    optimizer.zero_grad()

    output = model(x)

    # 计算损失
    loss = F.cross_entropy(output, y)

    # 反向传播
    loss.backward()

    # 更新梯度
    optimizer.step()

    # 打印损失
    if step % 10 == 0:
        print('Epoch: {}, Step {}, Loss: {}'.format(epoch, step, loss))

def test(model, test_loader):
“”“测试”“”

# 测试模式
model.eval()

# 存放正确个数
correct = 0

with torch.no_grad():
    for x, y in test_loader:

        # 加速
        if use_cuda:
            model = model.cuda()
            x, y = x.cuda(), y.cuda()

        # 获取结果
        output = model(x)

        # 预测结果
        pred = output.argmax(dim=1, keepdim=True)

        # 计算准确个数
        correct += pred.eq(y.view_as(pred)).sum().item()

# 计算准确率
accuracy = correct / len(test_loader.dataset) * 100

# 输出准确
print("Test Accuracy: {}%".format(accuracy))

def main():
# 获取数据
train_loader, test_loader = get_data()

# 迭代
for epoch in range(iteration_num):
    print("\n================ epoch: {} ================".format(epoch))
    train(network, epoch, train_loader)
    test(network, test_loader)

if name == “main”:
main()


输出结果:



是否使用 GPU 加速: True
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)

    Layer (type)               Output Shape         Param #

================================================================
Conv2d-1 [-1, 64, 30, 30] 1,792
BatchNorm2d-2 [-1, 64, 30, 30] 128
ReLU-3 [-1, 64, 30, 30] 0
MaxPool2d-4 [-1, 64, 15, 15] 0
Conv2d-5 [-1, 64, 15, 15] 36,928
BatchNorm2d-6 [-1, 64, 15, 15] 128
Conv2d-7 [-1, 64, 15, 15] 36,928
BatchNorm2d-8 [-1, 64, 15, 15] 128
BasicBlock-9 [-1, 64, 15, 15] 0
Conv2d-10 [-1, 64, 15, 15] 36,928
BatchNorm2d-11 [-1, 64, 15, 15] 128
Conv2d-12 [-1, 64, 15, 15] 36,928
BatchNorm2d-13 [-1, 64, 15, 15] 128
BasicBlock-14 [-1, 64, 15, 15] 0
Conv2d-15 [-1, 128, 8, 8] 73,856
BatchNorm2d-16 [-1, 128, 8, 8] 256
Conv2d-17 [-1, 128, 8, 8] 147,584
BatchNorm2d-18 [-1, 128, 8, 8] 256
Conv2d-19 [-1, 128, 8, 8] 8,320
BasicBlock-20 [-1, 128, 8, 8] 0
Conv2d-21 [-1, 128, 8, 8] 147,584
BatchNorm2d-22 [-1, 128, 8, 8] 256
Conv2d-23 [-1, 128, 8, 8] 147,584
BatchNorm2d-24 [-1, 128, 8, 8] 256
BasicBlock-25 [-1, 128, 8, 8] 0
Conv2d-26 [-1, 256, 4, 4] 295,168
BatchNorm2d-27 [-1, 256, 4, 4] 512
Conv2d-28 [-1, 256, 4, 4] 590,080
BatchNorm2d-29 [-1, 256, 4, 4] 512
Conv2d-30 [-1, 256, 4, 4] 33,024
BasicBlock-31 [-1, 256, 4, 4] 0
Conv2d-32 [-1, 256, 4, 4] 590,080
BatchNorm2d-33 [-1, 256, 4, 4] 512
Conv2d-34 [-1, 256, 4, 4] 590,080
BatchNorm2d-35 [-1, 256, 4, 4] 512
BasicBlock-36 [-1, 256, 4, 4] 0
Conv2d-37 [-1, 512, 2, 2] 1,180,160
BatchNorm2d-38 [-1, 512, 2, 2] 1,024
Conv2d-39 [-1, 512, 2, 2] 2,359,808
BatchNorm2d-40 [-1, 512, 2, 2] 1,024
Conv2d-41 [-1, 512, 2, 2] 131,584
BasicBlock-42 [-1, 512, 2, 2] 0
Conv2d-43 [-1, 512, 2, 2] 2,359,808
BatchNorm2d-44 [-1, 512, 2, 2] 1,024
Conv2d-45 [-1, 512, 2, 2] 2,359,808
BatchNorm2d-46 [-1, 512, 2, 2] 1,024
BasicBlock-47 [-1, 512, 2, 2] 0
AvgPool2d-48 [-1, 512, 1, 1] 0
Flatten-49 [-1, 512] 0
Linear-50 [-1, 100] 51,300

Total params: 11,223,140
Trainable params: 11,223,140
Non-trainable params: 0

Input size (MB): 0.01
Forward/backward pass size (MB): 3.74
Params size (MB): 42.81
Estimated Total Size (MB): 46.56

None
Downloading https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz to ./data/cifar-100-python.tar.gz
169001984/? [00:07<00:00, 23425059.51it/s]

Extracting ./data/cifar-100-python.tar.gz to ./data
Files already downloaded and verified

================ epoch: 0 ================
Epoch: 0, Step 0, Loss: 4.73184871673584
Epoch: 0, Step 10, Loss: 4.262868881225586
Epoch: 0, Step 20, Loss: 3.946244239807129
Epoch: 0, Step 30, Loss: 3.7039854526519775
Epoch: 0, Step 40, Loss: 3.5138051509857178
Test Accuracy: 17.16%

================ epoch: 1 ================
Epoch: 1, Step 0, Loss: 3.3631155490875244
Epoch: 1, Step 10, Loss: 3.183103561401367
Epoch: 1, Step 20, Loss: 3.0515971183776855
Epoch: 1, Step 30, Loss: 2.913054943084717
Epoch: 1, Step 40, Loss: 2.8454060554504395
Test Accuracy: 26.76%

================ epoch: 2 ================
Epoch: 2, Step 0, Loss: 2.764857053756714
Epoch: 2, Step 10, Loss: 2.5304853916168213
Epoch: 2, Step 20, Loss: 2.3920257091522217
Epoch: 2, Step 30, Loss: 2.294809341430664
Epoch: 2, Step 40, Loss: 2.2125251293182373
Test Accuracy: 30.599999999999998%

================ epoch: 3 ================
Epoch: 3, Step 0, Loss: 2.15826678276062
Epoch: 3, Step 10, Loss: 1.9255717992782593
Epoch: 3, Step 20, Loss: 1.7490493059158325
Epoch: 3, Step 30, Loss: 1.6468313932418823
Epoch: 3, Step 40, Loss: 1.5404233932495117
Test Accuracy: 29.659999999999997%

================ epoch: 4 ================
Epoch: 4, Step 0, Loss: 1.4881120920181274
Epoch: 4, Step 10, Loss: 1.3130300045013428
Epoch: 4, Step 20, Loss: 1.119794249534607
Epoch: 4, Step 30, Loss: 1.07780921459198
Epoch: 4, Step 40, Loss: 0.9983140826225281
Test Accuracy: 27.04%

================ epoch: 5 ================
Epoch: 5, Step 0, Loss: 1.0429306030273438
Epoch: 5, Step 10, Loss: 0.9188315868377686
Epoch: 5, Step 20, Loss: 0.7664494514465332
Epoch: 5, Step 30, Loss: 0.8060574531555176
Epoch: 5, Step 40, Loss: 0.7700539231300354
Test Accuracy: 25.629999999999995%

================ epoch: 6 ================
Epoch: 6, Step 0, Loss: 0.8620188236236572
Epoch: 6, Step 10, Loss: 0.8017312288284302
Epoch: 6, Step 20, Loss: 0.6923062801361084
Epoch: 6, Step 30, Loss: 0.6696692109107971
Epoch: 6, Step 40, Loss: 0.6102812886238098
Test Accuracy: 25.45%

================ epoch: 7 ================
Epoch: 7, Step 0, Loss: 0.5835701823234558
Epoch: 7, Step 10, Loss: 0.5514459013938904
Epoch: 7, Step 20, Loss: 0.4809255301952362
Epoch: 7, Step 30, Loss: 0.3889707326889038
Epoch: 7, Step 40, Loss: 0.42040011286735535
Test Accuracy: 25.3%

================ epoch: 8 ================
Epoch: 8, Step 0, Loss: 0.4036518931388855
Epoch: 8, Step 10, Loss: 0.31424838304519653
Epoch: 8, Step 20, Loss: 0.2538606524467468
Epoch: 8, Step 30, Loss: 0.26636990904808044
Epoch: 8, Step 40, Loss: 0.23289920389652252
Test Accuracy: 28.22%

================ epoch: 9 ================
Epoch: 9, Step 0, Loss: 0.20370212197303772
Epoch: 9, Step 10, Loss: 0.21275906264781952
Epoch: 9, Step 20, Loss: 0.1724529266357422
Epoch: 9, Step 30, Loss: 0.16944238543510437
Epoch: 9, Step 40, Loss: 0.11199608445167542
Test Accuracy: 28.17%

================ epoch: 10 ================
Epoch: 10, Step 0, Loss: 0.14693205058574677
Epoch: 10, Step 10, Loss: 0.11063629388809204
Epoch: 10, Step 20, Loss: 0.08746964484453201
Epoch: 10, Step 30, Loss: 0.08660224825143814
Epoch: 10, Step 40, Loss: 0.09079966694116592
Test Accuracy: 29.12%

================ epoch: 11 ================
Epoch: 11, Step 0, Loss: 0.07582048326730728
Epoch: 11, Step 10, Loss: 0.07523166388273239
Epoch: 11, Step 20, Loss: 0.05015444755554199
Epoch: 11, Step 30, Loss: 0.06376209855079651
Epoch: 11, Step 40, Loss: 0.047050636261701584
Test Accuracy: 30.159999999999997%

================ epoch: 12 ================
Epoch: 12, Step 0, Loss: 0.03873936086893082
Epoch: 12, Step 10, Loss: 0.036511268466711044
Epoch: 12, Step 20, Loss: 0.03504694253206253
Epoch: 12, Step 30, Loss: 0.03236941248178482
Epoch: 12, Step 40, Loss: 0.04149263724684715
Test Accuracy: 30.69%

================ epoch: 13 ================
Epoch: 13, Step 0, Loss: 0.02524631842970848
Epoch: 13, Step 10, Loss: 0.02024298906326294
Epoch: 13, Step 20, Loss: 0.01565425843000412
Epoch: 13, Step 30, Loss: 0.03372647985816002
Epoch: 13, Step 40, Loss: 0.03173805773258209
Test Accuracy: 30.61%

================ epoch: 14 ================
Epoch: 14, Step 0, Loss: 0.013597095385193825
Epoch: 14, Step 10, Loss: 0.014107376337051392
Epoch: 14, Step 20, Loss: 0.010056688450276852
Epoch: 14, Step 30, Loss: 0.016869302839040756
Epoch: 14, Step 40, Loss: 0.016789773479104042
Test Accuracy: 30.79%

================ epoch: 15 ================
Epoch: 15, Step 0, Loss: 0.00870730821043253
Epoch: 15, Step 10, Loss: 0.0070304274559021
Epoch: 15, Step 20, Loss: 0.005506859626621008
Epoch: 15, Step 30, Loss: 0.02930188737809658
Epoch: 15, Step 40, Loss: 0.013658527284860611
Test Accuracy: 30.990000000000002%

================ epoch: 16 ================
Epoch: 16, Step 0, Loss: 0.006122640334069729
Epoch: 16, Step 10, Loss: 0.008687378838658333
Epoch: 16, Step 20, Loss: 0.008756318129599094
Epoch: 16, Step 30, Loss: 0.011087586171925068
Epoch: 16, Step 40, Loss: 0.011925156228244305
Test Accuracy: 31.25%

================ epoch: 17 ================
Epoch: 17, Step 0, Loss: 0.00833406113088131
Epoch: 17, Step 10, Loss: 0.004966908134520054
Epoch: 17, Step 20, Loss: 0.003708316246047616
Epoch: 17, Step 30, Loss: 0.020299237221479416
Epoch: 17, Step 40, Loss: 0.010047768242657185
Test Accuracy: 31.540000000000003%

================ epoch: 18 ================
Epoch: 18, Step 0, Loss: 0.0037587652914226055
Epoch: 18, Step 10, Loss: 0.0033208071254193783
Epoch: 18, Step 20, Loss: 0.004131313879042864
Epoch: 18, Step 30, Loss: 0.012251097708940506
Epoch: 18, Step 40, Loss: 0.00844736211001873

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

ss: 0.004131313879042864
Epoch: 18, Step 30, Loss: 0.012251097708940506
Epoch: 18, Step 40, Loss: 0.00844736211001873

[外链图片转存中…(img-3IXymmT3-1715300434295)]
[外链图片转存中…(img-Eu3SDYtw-1715300434296)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一个简单的基于PyTorch实现图片2分类的代码,使用的是ResNet18模型: ```python import torch import torch.nn as nn import torchvision.models as models # 定义ResNet18模型 class ResNet18(nn.Module): def __init__(self): super(ResNet18, self).__init__() self.resnet18 = models.resnet18(pretrained=True) self.fc = nn.Linear(1000, 2) # 全连接层,输出2类 def forward(self, x): x = self.resnet18(x) x = self.fc(x) return x # 训练函数 def train(model, train_loader, criterion, optimizer): model.train() running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / len(train_loader) # 测试函数 def test(model, test_loader, criterion): model.eval() correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print('Accuracy of the network on the test images: %d %%' % (accuracy)) return accuracy # 主函数 if __name__ == '__main__': # 加载数据集,这里假设使用的是torchvision.datasets.ImageFolder train_dataset = torchvision.datasets.ImageFolder('train', transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=4, shuffle=True, num_workers=2) test_dataset = torchvision.datasets.ImageFolder('test', transform=transforms.ToTensor()) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=4, shuffle=False, num_workers=2) # 定义模型、损失函数和优化器 model = ResNet18() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 训练和测试 for epoch in range(10): train_loss = train(model, train_loader, criterion, optimizer) test_accuracy = test(model, test_loader, criterion) print('Epoch: %d, Training Loss: %.3f, Test Accuracy: %.3f' % (epoch + 1, train_loss, test_accuracy)) ``` 需要注意的是,这只是一个简单的示例代码,具体实现还需要根据数据集和应用场景进行相应的修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值